
Goal: To understand relationships between 

brittle failure, stresses, and fault orientation.

Brittle deformation and Faulting
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Leonardo Da Vinci (1452-1519) showed that the friction force is independent of the 

geometrical area of contact.

Frictional Strength

Question Da Vinci asked: Given that all 

objects shown below are of equal mass and 

identical shape, in which case the frictional 

force is greater?

2



• Amontons' first law: The frictional force is independent of the 

geometrical contact area.

• Amontons' second law: The friction force, FS, is proportional to 

the normal force, FN:

μ: static coefficient of friction

(Byerlee, 1978)

Frictional Strength
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NS FF =

ns  =



(Byerlee, 1978)

Initial friction

Maximum friction

Residual friction

Frictional Strength
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(Byerlee, 1978)

< Maximum friction for normal stress up to 50 bar >

Frictional Strength
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(Byerlee, 1978)

< Initial and maximum friction for normal stress up to 1 kbar >

Frictional Strength
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(Byerlee, 1978)

< Initial and maximum friction for normal stress up to 20 kbar >

Frictional Strength
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Because of friction, certain critical shear stress is required before sliding initiates on 

preexisting fracture

Experimental data show that 

failure criterion for frictional sliding 

is largely independent of rock 

type (Byerlee, 1978)

Frictional sliding criterion for most ROCKS is simple

s = 0.85 n

s = 50 MPa + 0.6 n 

But, besides friction we have to think about how to break a surface.

Frictional Strength
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angle of friction (φf):

tan(φf) = 0.6 ~ 0.85



(Jaeger and Cook, 1976)

Increasing confining pressure

Shear Fractures Tension Fractures

Fracture Strength
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Mohr-Coulomb failure criterion

σs

σn

φ
σc = σ0 + tan(φ)σn

σ0

Fracture Strength
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< Fracture strength envelopes for different rocks >

Fracture Strength
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φ

σs = σ0 + tan(φ)σn

σ0



A stress review for Mohr Circle

• Stress = Force/Area

• 3 principal values, σ1, σ2, and σ3, corresponding to three 

principal directions.

• σ1 ≥ σ2 ≥ σ3, and positive when compressional.

• (hydro/litho)static stress is when σ1 = σ2 = σ3

• Differential stress (σd) defined as (σ1 – σ3)

Mohr Circle: A device to relate friction and 

cohesion to fault orientation

Mohr Circle
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The stress is resolved into 2 components:

1. Shear stress (σs), acting parallel with the plane

2. Normal stress (σn), acting perpendicular to the plane

σ1

σ1

σ3σ3

σn

σn

σs
σs

ψ
n

Mohr Circle
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Clockwise 

rotation from σ1:

θ= −(90-|ψ|)°



The stress is resolved into 2 components:

σn

σn

σs
σs

y

σ1

x
σ3

θ (< 0)
n

σ1

σ3

Mohr Circle

If we start with principal stresses, σ12=0, σ11=σ3 and σ22=σ1.

Also, σn=σ’11 and σs=σ’12. 14

ψ



• Stress components are related by:

• σs = ½(σ1 - σ3)sin(2θ)

• σn = ½(σ1 + σ3) - ½(σ1 - σ3)cos(2θ)

• From these, we get an equation for a circle:

[σn - ½(σ1 + σ3)]
2+σs=1/4(σ1 - σ3)

2

σn

σn

σs
σs

y

σ1

x
σ3

θ n

σ1

σ3

Mohr Circle
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Mohr circle for stress: 

Diameter = (σ1 - σ3), called “differential stress”.

Center on the σn-axis at point = ½(σ1 + σ3)

σs

σnσ1σ3 ½(σ1+σ3)

½(σ1-σ3)

Mohr Circle
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Finding σs, and σn

Can use a Mohr circle to find σs, and σn for any plane

σs

σnσ1σ3

Mohr Circle
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σs

σnσ1

σ3

2ψ

Represents planes of which normal is ±θ° 

from σ1. Dihedral angle of the conjugate 

faults is 2ψ°.

Mohr Circle

18

Can use a Mohr circle to find σs, and σn for any plane.

For instance, plot a line from center to edge of circle at 

angle 2θ = 180−2ψ°from σ1.

σ1

σ1

σ3

σ3

ψ ψ
2ψ

2θ (>0)

2θ (<0)



X- and y-coordinates of intersection of line and circle define 

σs and σn for the plane

σs

σnσ1σ3

(σs, σn) of plane

2ψ

Mohr Circle

• σs = ½(σ1 - σ3)sin(2θ)

• σn = ½(σ1 + σ3) - ½(σ1 - σ3)cos(2θ), 
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2θ (>0)



Envelope of frictional strength

σs

σn

φf = angle of sliding friction

2ψ

Mohr Circle and Strength Envelope
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The Coulomb envelope for fracture strength
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Mohr Circle and Strength Envelope
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Effect of pore-fluid pressure

Pore fluid pressure (Pf) effectively lowers the stress 

in all directions

The effective stresses (σ1eff
, σ2eff

, and σ3eff
) = 

principal stresses - Pf

σ1eff
 = σ1 - Pf     σ2eff

= σ2 - Pf      σ3eff
 = σ3 - Pf

Mohr Circle and Strength Envelope
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σs

σnσ1σ3

< Stable stress conditions >

Mohr Circle and Strength Envelope

23



σs

σnσ1σ3

σ1eff

σ3eff

Increase in pore fluid pressure can drive 

faulting!!

Mohr Circle and Strength Envelope
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Analogous to an 

air hockey table

Mohr Circle and Strength Envelope
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Primary assumptions

1. Surface of the earth is not acted on by shear or 

normal stresses.  

• So 2 of the 3 principal stresses are parallel to 

the surface.

2. Homogenous rocks

3. Coulomb behavior

Anderson’s theory of faulting
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If Δσxx is negative (under extension), σ1 =σyy and σ3 =σxx. 

Then, σs = ½(σyy - σxx)sin(2θ) and                                                      

σn =  ½(σyy + σxx) - ½(σyy - σxx)cos(2θ)

Plugging σn and σs into the Coulomb Failure criterion, σs = σ0 + 

fsσn, where fs = tan(φ), we get

Anderson’s theory of faulting
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In the above equation, upper sign applies to Δσxx > 0 (i.e., 

thrust faults) and the lower sign to Δσxx < 0  (i.e., normal 

faults). We can also get an expression for Δσxx from this 

equation:

Anderson’s theory of faulting

Now we are interested in the smallest possible Δσxx that 

satisfies the above equation and the corresponding value of fs 

because that value will correspond to the strength.
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The upper and lower sign corresponds to thrust and normal 

faults, respectively. This expression simply represents the 

geometric relation between the failure envelope and the Mohr 

circle we saw earlier. 

The corresponding differential stress becomes

Anderson’s theory of faulting
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Most rocks have an angle of internal friction ≈ 30°

• σ1 horizontal, σ3 vertical — reverse faults

• σ1 vertical, σ3 horizontal  — normal faults

• σ1 horizontal, σ3 horizontal — strike-slip faults

Anderson’s theory of faulting
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• Reverse faults (σ1 horizontal): should form at ~30° 

dip

• Normal faults (σ1 vertical): should form at ~60°dip

• Strike-slip faults: should form at ~90°dip and ~60° 

dihedral angle

σs

σnσ1σ3

φ=~30-40°

2ψ

Anderson’s theory of faulting
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