Fold-and-thrust Belts

» Fold-and-thrust belts and submarine accretionary wedges share these
features:
> In cross-section, they occupy a wedge-shaped deformed region overlying a
basal detachment or décollement fault.

» The rocks or sediments beneath this fault show very little deformation.

» The décollement fault characteristically dips toward the interior of the mountain
belt or, in the case of a submarine wedge, roward the island arc

> The topography, in contrast, slopes toward the toe or deformation front of the
wedge.

» Deformation within the wedge is generally dominated by imbricate thrust faults
verging toward the toe and related fault-bend folding.



Fold-and-thrust Belts

Examples of fold-and-thrust belts and accretionary wedges: Canadian Rocky
Mountains and the Lesser Antilles
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Fig. 1. a) Cross-section through the Canadian Rocky Mountains fold-and-thrust belt, redrawn from Bally et al. (1966). b) Cross-section through the Lesser Antilles acrretionas
wedge, redrawn from Westbrook et al. (1982).

(Buiter, Tectonophysics, 2012)




Fold-and-thrust Belts

» The starting point of the mechanical theory for these structures is the
recognition that they are analogous to a wedge of sand in front of a moving
bulldozer.

e

» The sand, rock, or sediment deforms until it develops a constant critical
taper: i.e., the wedge slides stably without further deformation as it is pushed
unless it encounters new fresh materials at the toe.



Fold-and-thrust Belts

» The geometry of the critical taper is governed by the relative magnitude of the
basal frictional resistance to internal strength.

» An increase in the basal resistance increases the critical taper while an
increase in the wedge strength decreases the critical taper.

» The state of stress within a critically tapered wedge in the upper crust is
everywhere on the verge of Coulomb failure since the taper is a product of
continued brittle deformation.



Mechanics of a Bulldozer Wedge: Kinematics

thickness h

time 0
M

velocity v,

» « + [: the critical taper.
» «: the surface slope of a deformed wedge

» 3: the slope of a rigid hillside.

» From the mass conservation, we get the rate of the wedge growth for a
constant density p:
d

gt L pW2 tan(a+ 5)| = phv. (1)



Mechanics of a Bulldozer Wedge: Kinematics

» By the definition of the critical taper, « + 8 does not change in time. So, (1)

becomes
aw hv @
at  tan(a+ )
» The solution is
1/2 1/2
W— [ 2hv } #1724, [ 2hv } f/2 3)
tan(a + f) a+p

where the approximation is valed if o« + 5 <« 1 in radian.

» Since the coefficient is constant according to the assumptions we made, both
the width and height(= W tan(a + 3)) grow like t'/2.

» The growth is self-similar in the sense that the wedge at time 2t is
indistinguishable from the wedge at time t, magnified v/2 times.



Mechanics of a Bulldozer Wedge: Critical Taper

> In the setting described above, we consider the force balance on an
infinitesimal segment of the wedge lying between x and x + dx.

> First, a gravitational body force whose x component per unit length along
strike is

Fg = —(pHdx)gsin a, (4)

where g is the acceleration of gravity, and H is the local wedge thickness.



Mechanics of a Bulldozer Wedge: Critical Taper

» Second, there is the net force exerted by the compressive tractions oy acting
on the sidewalls at x and x + dx. Setting compressive stress to be negative,
we get this force as

H
Fs = / tx(x) + tx(x+ dX)dZ
0
H
_ /0 (0(x) - —x)x + ((x + dx) - )z
= /OH [—oxx(X, Z) + oxx(X + dXx, 2)] dz, (9)

where ex = (1, 0) is the unit basis vector for the x axis.



Mechanics of a Bulldozer Wedge: Critical Taper
» Thirdly, and finally, there is the surface force exerted on the base.

» In a coordinate system of which x’ axis is parallel to the bottom surface, we
get the traction vector, t' = o’ - (0,1) = (0, 1,0, ) = (b, on)-

» Trasnforming t' to the x — z coordinate system,

te]  [cos(a+B) —sin(a+B)\ [
[tj a <5in(04 +B)  cos(a+ B) ) |:0'n:| ) (6)

we get
Fp = tydx = [rpcos(a + ) — opsin(a + 5)] dx. (7)

» The base is governed by a frictional sliding condition, 7, = pp(—on), where
is the basal friction coefficient. The sign is to make traction acting on +x
direction when o, is compressive and thus negative. With this, we have

Fp = —on[ppcos(a + B) + sin(a + 5)] dx. (8)



Mechanics of a Bulldozer Wedge: Critical Taper
» The force balance conditions is

» The first two forces, F4 and Fs, act in the —x direction, whereas Fj, acts in the
+x direction.

» We divide (9) with dx and assume dx — 0. The result is

d H
—pgHsina — op [pp cos(a + ) + sin(a + B)] + / oxxdz = 0. (10)

ax Jo

> Fora < 1and g < 1, we employ the approximations sina =~ «,
sin(a + B) = a + B, cos(av + ) ~ 1 and o, =~ —pgH. This reduces (10) to

d H
paH(5 + o) + g [ oz 0 (1)



Mechanics of a Bulldozer Wedge: Critical Taper

» The failure criterion for non-cohesive dry sand can be written in the form

o1 _ 14sin¢ (12)
o3 1—sing
where o1 and o3 are the greatest and least principal compressive stresses,
respectively, and ¢ is the internal friction angle.

» From the last class, we know that frictional sliding satisfies os = tan ¢ op,
(cohesion is zero since non-cohesive!) and also

01 — 03 o1 — 03

Is=—>% sin26 = 5 Cos ¢, (13)
_0’1+U3_0’1—0’3 . _01+U3_U1—03
on= "> 5 sin 20 = 5 5 Cos o, (14)

since 20 = /2 — ¢ under the failure condition.
» Plugging (13) and (14) into the sliding condition, we get (12).



Mechanics of a Bulldozer Wedge: Critical Taper

» In a narrow taper (i.e., « < 1 and g < 1), o1 and o3 are approximately
horizontal and vertical:

1+ sin
Oxx /= 01 %_1—sinipgz’ (15)
Ozz = 03 = —pgz. (16)

» The traction acting on the sidewalls then reduces in this approximation to

d [+ 1 +si
dX/O oxx0Z ~ 7 —S:: ngH(a+B), (17)

where we have used the relation dH/dx = tan(a + 3) = a + 5.



Mechanics of a Bulldozer Wedge: Critical Taper

» Substituting (17) into (11), we obtain the approximate critical taper equation
for a dry sand wedge in front of a bulldozer:
1 +sing
~ . 1
a+ 1_Sin¢(5+ﬂb) (18)
» The critical taper, a + (3 is proportional to the basal friction coefficient, jp;
inversely to the internal friction angle, ¢.




Noncohesive Coulomb Wedge
> Now, we want to consider the effects of pore fluid pressure on the stability of
the wedge.

> Also, we want to get exact solutions.
» Here is the problem setting:

traction

Pf |GZZ|

depth

N




Noncohesive Coulomb Wedge
» The static equilibrium equation is

80)()( (90')(2

B 57 pgzZsina =0, (19)
O00xz 0022 o
Ix + 9z + pgzcosa = 0. (20)

» Boundary conditions on the upper surface of the wedge:
oxz =0, 0zz=—psgD, (21)

where D is the water depth.

> |t is convenient to define the generalized Hubbert-Rubey pore fluid to
lithostatic pressure ratio by

pr — prgD

A= —— =
—0zz — prgD

(22)

» We assume that \, p and the internal friction coefficient (1) are all constant.



Noncohesive Coulomb Wedge
» The density p is actually defined as p = (1 — n)ps + np¢. Since the rock (ps)
and fluid density (pf) are constant, the constant aggregate density (i.e.
constant p) implies a constant porosity, 7.

» For convenience, we need to work out some more relations between stress
components and other parameters.
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Noncohesive Coulomb Wedge

» From geometry,

p* = _%(U;z + O.;X)7
R = p*sin¢ + Scos ¢,

Oy = —P* — Rcos 2y,

03, =—p" + Rcos2y,

oy, = Rsin2y.

» From these relations, we derive the following expressions for later uses:

* % * *
Iz 5 T %2z ; 9% sin ¢ cos 21) + Scos ¢ cos 29
:>0';Z—O';X: Scotp — o},
2 cscpsec2h —1°
Scot¢ — ol
oy, = tan 2y i

cscpsec2y —1°



Noncohesive Coulomb Wedge

» The following stress components satisfy the static momentum balance, the failure
condition and the boundary conditions on the top surface:

v, =(p—pr)gzsina, (30)
5, = —pigD — pgz cos 31)
cscpsec2yg — 2\ + 1

cscpsec2ypg —1 7

g

g

O = —prgD — pgz cos a

provided that

tan 2¢ _(1—=rpi/p
cscpsec2iyg —1 ( 1) e (33)

> (33) relates the stress orientation angle v to the surface slope «; we have assumed
that o is constant and have made use of the relation dD/dx = —sin a.



Noncohesive Coulomb Wedge

>

>

(30), (31), (32) are an exact solution for the state of stress in a sloping
half-space on the verge of Coulomb failure.

All that remains is to satisfy the basal boundary condition. Allowing for a
different pore-fluid regime (like a different porosity) on the décollement fault,
we have this boundary condition for the base:

Tp = —p(on + Pw), (34)

where py, is the pore-fluid pressure on the base and y, is the basal coefficient
of friction.

Expressing the basal shear and normal stress in terms of stress components
in the x — z coordinate system:

o =1/2(07, — 0% )sin2(a + B) + 0}, cos2(a + B), (35)
on =0y, —0x,sin2(a+ B) —1/2(03, — 0x)[1 — cos2(a + 5)]. (36)



Noncohesive Coulomb Wedge

> (30), (31), (32), (35) and (36) are used to determine the dip of the surface on
which the frictional sliding condition (34) is satisfied.

» After some algebra, (5 is given by

a+ B =1hp — tho, (37)
where 20 1
tan 2yp B — Ap

csc ¢ sec2ypp — 1 _'ub(1—/\>' (38)

> (37) is the exact critical taper equation for a homogeneous noncohesive
Coulomb wedge.



Noncohesive Coulomb Wedge

» Here is the usual procedure we take to play with the above critical taper
equation.
1. We can start from (38) to find ¢, from pp and Ap.

tan 2¢p B 1=
cschsec2dp — 1 MP\T - -
2. Then, assume a value of the surface slope, «, to get 1 from (33).

tan 2¢y 1 —ps/p
= t .
csc psec 2y — 1 < 1—-A ana

3. Since 1y, Yo and « are known, we get 5 from the taper equation, (37).

B=1p—1o— .



Noncohesive Coulomb Wedge

» Once we get all these angles, we can predict the orientation of step-up from
the basal décollement fault as well as that of backthrust faults.

back thrusts
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Fig. 9. Diagram showing stable and unstable regions of dry sand
wedges having ¢ = 30° and ¢, = 10°. Critical wedges labeled 1-8 are
depicted in Figure 10.
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