
Fold-and-thrust Belts

▶ Fold-and-thrust belts and submarine accretionary wedges share these
features:
▶ In cross-section, they occupy a wedge-shaped deformed region overlying a

basal detachment or décollement fault.

▶ The rocks or sediments beneath this fault show very little deformation.

▶ The décollement fault characteristically dips toward the interior of the mountain
belt or, in the case of a submarine wedge, roward the island arc

▶ The topography, in contrast, slopes toward the toe or deformation front of the
wedge.

▶ Deformation within the wedge is generally dominated by imbricate thrust faults
verging toward the toe and related fault-bend folding.



Fold-and-thrust Belts

Examples of fold-and-thrust belts and accretionary wedges: Canadian Rocky
Mountains and the Lesser Antilles

(Buiter, Tectonophysics, 2012)



Fold-and-thrust Belts

▶ The starting point of the mechanical theory for these structures is the
recognition that they are analogous to a wedge of sand in front of a moving
bulldozer.

▶ The sand, rock, or sediment deforms until it develops a constant critical
taper: i.e., the wedge slides stably without further deformation as it is pushed
unless it encounters new fresh materials at the toe.



Fold-and-thrust Belts

▶ The geometry of the critical taper is governed by the relative magnitude of the
basal frictional resistance to internal strength.

▶ An increase in the basal resistance increases the critical taper while an
increase in the wedge strength decreases the critical taper.

▶ The state of stress within a critically tapered wedge in the upper crust is
everywhere on the verge of Coulomb failure since the taper is a product of
continued brittle deformation.



Mechanics of a Bulldozer Wedge: Kinematics

▶ α+ β: the critical taper.
▶ α: the surface slope of a deformed wedge

▶ β: the slope of a rigid hillside.

▶ From the mass conservation, we get the rate of the wedge growth for a
constant density ρ:

d
dt

[
1
2
ρW 2 tan(α+ β)

]
= ρhv . (1)



Mechanics of a Bulldozer Wedge: Kinematics

▶ By the definition of the critical taper, α+ β does not change in time. So, (1)
becomes

W
dW
dt

=
hv

tan(α+ β)
. (2)

▶ The solution is

W =

[
2hv

tan(α+ β)

]1/2

t1/2 ≈
[

2hv
α+ β

]1/2

t1/2, (3)

where the approximation is valed if α+ β ≪ 1 in radian.

▶ Since the coefficient is constant according to the assumptions we made, both
the width and height(= W tan(α+ β)) grow like t1/2.

▶ The growth is self-similar in the sense that the wedge at time 2t is
indistinguishable from the wedge at time t, magnified

√
2 times.



Mechanics of a Bulldozer Wedge: Critical Taper

▶ In the setting described above, we consider the force balance on an
infinitesimal segment of the wedge lying between x and x + dx .

▶ First, a gravitational body force whose x component per unit length along
strike is

Fg = −(ρHdx)g sinα, (4)

where g is the acceleration of gravity, and H is the local wedge thickness.



Mechanics of a Bulldozer Wedge: Critical Taper

▶ Second, there is the net force exerted by the compressive tractions σxx acting
on the sidewalls at x and x + dx . Setting compressive stress to be negative,
we get this force as

Fs =

∫ H

0
tx(x) + tx(x + dx)dz

=

∫ H

0
(σ(x) · −ex)x + (σ(x + dx) · ex)xdz

=

∫ H

0
[−σxx(x , z) + σxx(x + dx , z)]dz, (5)

where ex = (1,0) is the unit basis vector for the x axis.



Mechanics of a Bulldozer Wedge: Critical Taper
▶ Thirdly, and finally, there is the surface force exerted on the base.

▶ In a coordinate system of which x ′ axis is parallel to the bottom surface, we
get the traction vector, t′ = σ′ · (0,1) = (σx ′z′ , σz′z′ ) ≡ (τb, σn).

▶ Trasnforming t′ to the x − z coordinate system,[
tx
tz

]
=

(
cos(α+ β) − sin(α+ β)
sin(α+ β) cos(α+ β)

)[
τb
σn

]
, (6)

we get
Fb = txdx = [τb cos(α+ β)− σn sin(α+ β)]dx . (7)

▶ The base is governed by a frictional sliding condition, τb = µb(−σn), where µb
is the basal friction coefficient. The sign is to make traction acting on +x
direction when σn is compressive and thus negative. With this, we have

Fb = −σn [µb cos(α+ β) + sin(α+ β)]dx . (8)



Mechanics of a Bulldozer Wedge: Critical Taper
▶ The force balance conditions is

Fg + Fs + Fb = 0. (9)

▶ The first two forces, Fg and Fs, act in the −x direction, whereas Fb acts in the
+x direction.

▶ We divide (9) with dx and assume dx → 0. The result is

−ρgH sinα− σn [µb cos(α+ β) + sin(α+ β)] +
d
dx

∫ H

0
σxxdz = 0. (10)

▶ For α≪ 1 and β ≪ 1, we employ the approximations sinα ≈ α,
sin(α+ β) ≈ α+ β, cos(α+ β) ≈ 1 and σn ≈ −ρgH. This reduces (10) to

ρgH(β + µb) +
d
dx

∫ H

0
σxxdz ≈ 0. (11)



Mechanics of a Bulldozer Wedge: Critical Taper

▶ The failure criterion for non-cohesive dry sand can be written in the form

σ1

σ3
=

1 + sinϕ

1 − sinϕ
, (12)

where σ1 and σ3 are the greatest and least principal compressive stresses,
respectively, and ϕ is the internal friction angle.
▶ From the last class, we know that frictional sliding satisfies σs = tanϕσn

(cohesion is zero since non-cohesive!) and also

σs =
σ1 − σ3

2
sin2θ =

σ1 − σ3

2
cosϕ, (13)

σn =
σ1 + σ3

2
− σ1 − σ3

2
sin2θ =

σ1 + σ3

2
− σ1 − σ3

2
cosϕ, (14)

since 2θ = π/2 − ϕ under the failure condition.

▶ Plugging (13) and (14) into the sliding condition, we get (12).



Mechanics of a Bulldozer Wedge: Critical Taper

▶ In a narrow taper (i.e., α≪ 1 and β ≪ 1), σ1 and σ3 are approximately
horizontal and vertical:

σxx ≈ σ1 ≈ −1 + sinϕ

1 − sinϕ
ρgz, (15)

σzz ≈ σ3 ≈ −ρgz. (16)

▶ The traction acting on the sidewalls then reduces in this approximation to

d
dx

∫ H

0
σxxdz ≈ −1 + sinϕ

1 − sinϕ
ρgH(α+ β), (17)

where we have used the relation dH/dx = tan(α+ β) ≈ α+ β.



Mechanics of a Bulldozer Wedge: Critical Taper

▶ Substituting (17) into (11), we obtain the approximate critical taper equation
for a dry sand wedge in front of a bulldozer:

α+ β ≈ 1 + sinϕ

1 − sinϕ
(β + µb). (18)

▶ The critical taper, α+ β is proportional to the basal friction coefficient, µb;
inversely to the internal friction angle, ϕ.



Noncohesive Coulomb Wedge
▶ Now, we want to consider the effects of pore fluid pressure on the stability of

the wedge.

▶ Also, we want to get exact solutions.

▶ Here is the problem setting:



Noncohesive Coulomb Wedge
▶ The static equilibrium equation is

∂σxx

∂x
+
∂σxz

∂z
− ρgz sinα = 0, (19)

∂σxz

∂x
+
∂σzz

∂z
+ ρgz cosα = 0. (20)

▶ Boundary conditions on the upper surface of the wedge:

σxz = 0, σzz = −ρf gD, (21)

where D is the water depth.

▶ It is convenient to define the generalized Hubbert-Rubey pore fluid to
lithostatic pressure ratio by

λ =
pf − ρf gD

−σzz − ρf gD
. (22)

▶ We assume that λ, ρ and the internal friction coefficient (µ) are all constant.



Noncohesive Coulomb Wedge
▶ The density ρ is actually defined as ρ = (1 − η)ρs + ηρf . Since the rock (ρs)

and fluid density (ρf ) are constant, the constant aggregate density (i.e.
constant ρ) implies a constant porosity, η.

▶ For convenience, we need to work out some more relations between stress
components and other parameters.



Noncohesive Coulomb Wedge
▶ From geometry,

p∗ = −1
2
(σ∗

zz + σ∗
xx), (23)

R = p∗ sinϕ+ S cosϕ, (24)
σ∗

xx = −p∗ − R cos2ψ, (25)
σ∗

zz = −p∗ + R cos2ψ, (26)
σ∗

xz = R sin2ψ. (27)

▶ From these relations, we derive the following expressions for later uses:

σ∗
zz − σ∗

xx

2
= −σ

∗
zz + σ∗

xx

2
sinϕ cos2ψ + S cosϕ cos2ψ

⇒ σ∗
zz − σ∗

xx

2
=

S cotϕ− σ∗
zz

cscϕ sec2ψ − 1
. (28)

σ∗
xz = tan2ψ

S cotϕ− σ∗
zz

cscϕ sec2ψ − 1
. (29)



Noncohesive Coulomb Wedge

▶ The following stress components satisfy the static momentum balance, the failure
condition and the boundary conditions on the top surface:

σ∗
xz = (ρ− ρf )gz sinα, (30)
σ∗

zz = −ρf gD − ρgz cosα, (31)

σ∗
xx = −ρf gD − ρgz cosα

cscϕ sec2ψ0 − 2λ+ 1
cscϕ sec2ψ0 − 1

, (32)

provided that
tan2ψ0

cscϕ sec2ψ0 − 1
=

(
1 − ρf/ρ

1 − λ

)
tanα. (33)

▶ (33) relates the stress orientation angle ψ0 to the surface slope α; we have assumed
that ψ0 is constant and have made use of the relation dD/dx = − sinα.



Noncohesive Coulomb Wedge
▶ (30), (31), (32) are an exact solution for the state of stress in a sloping

half-space on the verge of Coulomb failure.

▶ All that remains is to satisfy the basal boundary condition. Allowing for a
different pore-fluid regime (like a different porosity) on the décollement fault,
we have this boundary condition for the base:

τb = −µb(σn + pfb), (34)

where pfb is the pore-fluid pressure on the base and µb is the basal coefficient
of friction.

▶ Expressing the basal shear and normal stress in terms of stress components
in the x − z coordinate system:

τb = 1/2(σ∗zz − σ∗xx) sin2(α+ β) + σ∗xz cos2(α+ β), (35)
σn = σ∗zz − σ∗xz sin2(α+ β)− 1/2(σ∗zz − σ∗xx)[1 − cos2(α+ β)]. (36)



Noncohesive Coulomb Wedge

▶ (30), (31), (32), (35) and (36) are used to determine the dip of the surface on
which the frictional sliding condition (34) is satisfied.

▶ After some algebra, β is given by

α+ β = ψb − ψ0, (37)

where
tan2ψb

cscϕ sec2ψb − 1
= µb

(
1 − λb

1 − λ

)
. (38)

▶ (37) is the exact critical taper equation for a homogeneous noncohesive
Coulomb wedge.



Noncohesive Coulomb Wedge

▶ Here is the usual procedure we take to play with the above critical taper
equation.

1. We can start from (38) to find ψb from µb and λb.

tan2ψb

cscϕ sec2ψb − 1
= µb

(
1 − λb

1 − λ

)
.

2. Then, assume a value of the surface slope, α, to get ψ0 from (33).

tan2ψ0

cscϕ sec2ψ0 − 1
=

(
1 − ρf/ρ

1 − λ

)
tanα.

3. Since ψb, ψ0 and α are known, we get β from the taper equation, (37).

β = ψb − ψ0 − α.



Noncohesive Coulomb Wedge

▶ Once we get all these angles, we can predict the orientation of step-up from
the basal décollement fault as well as that of backthrust faults.



Noncohesive Coulomb Wedge
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