- ▶ Fold-and-thrust belts and submarine accretionary wedges share these features:
	- ▶ In cross-section, they occupy a **wedge-shaped deformed region** overlying a basal **detachment** or **décollement** fault.
	- ▶ The rocks or sediments beneath this fault show very little deformation.
	- \blacktriangleright The décollement fault characteristically dips toward the interior of the mountain belt or, in the case of a submarine wedge, roward the island arc
	- ▶ The topography, in contrast, slopes toward the toe or deformation front of the wedge.
	- \triangleright Deformation within the wedge is generally dominated by imbricate thrust faults verging toward the toe and related fault-bend folding.

Examples of fold-and-thrust belts and accretionary wedges: Canadian Rocky Mountains and the Lesser Antilles

 299

E

Fig. 1. a) Cross-section through the Canadian Rocky Mountains fold-and-thrust belt, redrawn from Bally et al. (1966). b) Cross-section through the Lesser Antilles acrretionary wedge, redrawn from Westbrook et al. (1982).

(Buiter, Tectonophysics, 2012)

 \blacktriangleright The starting point of the mechanical theory for these structures is the recognition that they are analogous to a wedge of sand in front of a moving bulldozer.

▶ The sand, rock, or sediment deforms until it develops a constant **critical taper**: i.e., the wedge slides stably without further deformation as it is pushed unless it encounters new fresh materials at the toe.

- \blacktriangleright The geometry of the critical taper is governed by the relative magnitude of the basal frictional resistance to internal strength.
- ▶ An increase in the basal resistance increases the critical taper while an increase in the wedge strength decreases the critical taper.
- \triangleright The state of stress within a critically tapered wedge in the upper crust is everywhere on the verge of Coulomb failure since the taper is a product of continued brittle deformation.

Mechanics of a Bulldozer Wedge: Kinematics

- $\blacktriangleright \alpha + \beta$: the critical taper.
	- \triangleright α : the surface slope of a deformed wedge
	- \triangleright β : the slope of a rigid hillside.
- ▶ From the mass conservation, we get the rate of the wedge growth for a constant density ρ:

$$
\frac{d}{dt}\left[\frac{1}{2}\rho W^2\tan(\alpha+\beta)\right]=\rho h v.
$$
 (1)

Mechanics of a Bulldozer Wedge: Kinematics

► By the definition of the critical taper, $\alpha + \beta$ does not change in time. So, [\(1\)](#page-4-0) becomes

$$
W\frac{dW}{dt} = \frac{hv}{\tan(\alpha + \beta)}.
$$
 (2)

 \blacktriangleright The solution is

$$
W = \left[\frac{2hv}{\tan(\alpha+\beta)}\right]^{1/2} t^{1/2} \approx \left[\frac{2hv}{\alpha+\beta}\right]^{1/2} t^{1/2},\tag{3}
$$

where the approximation is valed if $\alpha + \beta \ll 1$ in radian.

- ▶ Since the coefficient is constant according to the assumptions we made, both the width and height(= $W \tan(\alpha + \beta))$ grow like $t^{1/2}.$
- ▶ The growth is self-similar in the sense that the wedge at time 2*t* is The growth is sen-similar in the sense that the wedge at time zi
indistinguishable from the wedge at time t, magnified √2 times.

- ▶ In the setting described above, we consider the force balance on an infinitesimal segment of the wedge lying between x and $x + dx$.
- ▶ First, a gravitational body force whose *x* component per unit length along strike is

$$
F_g = -(\rho H dx)g\sin\alpha,\tag{4}
$$

 $2Q$

where *g* is the acceleration of gravity, and *H* is the local [we](#page-5-0)[dg](#page-7-0)[e](#page-5-0) [th](#page-6-0)[i](#page-7-0)[ck](#page-0-0)[ne](#page-22-0)[ss](#page-0-0)[.](#page-22-0)

 \triangleright Second, there is the net force exerted by the compressive tractions σ_{xx} acting on the sidewalls at *x* and $x + dx$. Setting compressive stress to be negative, we get this force as

$$
F_s = \int_0^H t_x(x) + t_x(x + dx) dz
$$

=
$$
\int_0^H (\sigma(x) \cdot -\mathbf{e}_x)_x + (\sigma(x + dx) \cdot \mathbf{e}_x)_x dz
$$

=
$$
\int_0^H [-\sigma_{xx}(x, z) + \sigma_{xx}(x + dx, z)] dz,
$$
 (5)

where $\mathbf{e}_x = (1, 0)$ is the unit basis vector for the *x* axis.

- ▶ Thirdly, and finally, there is the surface force exerted on the base.
- \blacktriangleright In a coordinate system of which x' axis is parallel to the bottom surface, we get the traction vector, $\mathbf{t}' = \boldsymbol{\sigma}' \cdot (0, 1) = (\sigma_{x'z'}, \sigma_{z'z'}) \equiv (\tau_b, \sigma_n)$.
- ▶ Trasnforming **t** ′ to the *x* − *z* coordinate system,

$$
\begin{bmatrix} t_x \\ t_z \end{bmatrix} = \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix} \begin{bmatrix} \tau_b \\ \sigma_n \end{bmatrix}, \tag{6}
$$

we get

$$
F_b = t_x dx = [\tau_b \cos(\alpha + \beta) - \sigma_n \sin(\alpha + \beta)] dx.
$$
 (7)

▶ The base is governed by a frictional sliding condition, $\tau_b = \mu_b(-\sigma_a)$, where μ_b is the basal friction coefficient. The sign is to make traction acting on $+x$ direction when σ_n is compressive and thus negative. With this, we have

$$
F_b = -\sigma_n \left[\mu_b \cos(\alpha + \beta) + \sin(\alpha + \beta) \right] dx. \tag{8}
$$

KORKAR KERKER E VOOR

 \blacktriangleright The force balance conditions is

$$
F_g + F_s + F_b = 0. \tag{9}
$$

- ▶ The first two forces, *^F^g* and *^Fs*, act in the [−]*^x* direction, whereas *^F^b* acts in the $+x$ direction.
- ▶ We divide [\(9\)](#page-9-0) with *dx* and assume $dx \rightarrow 0$. The result is

$$
-\rho gH\sin\alpha-\sigma_n\left[\mu_b\cos(\alpha+\beta)+\sin(\alpha+\beta)\right]+\frac{d}{dx}\int_0^H\sigma_{xx}dz=0.
$$
 (10)

► For $\alpha \ll 1$ and $\beta \ll 1$, we employ the approximations sin $\alpha \approx \alpha$. $\sin(\alpha + \beta) \approx \alpha + \beta$, $\cos(\alpha + \beta) \approx 1$ and $\sigma_n \approx -\rho gH$. This reduces [\(10\)](#page-9-1) to

$$
\rho g H(\beta + \mu_b) + \frac{d}{dx} \int_0^H \sigma_{xx} dz \approx 0. \qquad (11)
$$

KORK STRAIN A STRAIN A STRAIN

▶ The failure criterion for non-cohesive dry sand can be written in the form

$$
\frac{\sigma_1}{\sigma_3} = \frac{1 + \sin \phi}{1 - \sin \phi},\tag{12}
$$

where σ_1 and σ_3 are the greatest and least principal compressive stresses, respectively, and ϕ is the internal friction angle.

E From the last class, we know that frictional sliding satisfies $\sigma_s = \tan \phi \sigma_n$ (cohesion is zero since non-cohesive!) and also

$$
\sigma_s = \frac{\sigma_1 - \sigma_3}{2} \sin 2\theta = \frac{\sigma_1 - \sigma_3}{2} \cos \phi, \tag{13}
$$

$$
\sigma_n = \frac{\sigma_1 + \sigma_3}{2} - \frac{\sigma_1 - \sigma_3}{2}\sin 2\theta = \frac{\sigma_1 + \sigma_3}{2} - \frac{\sigma_1 - \sigma_3}{2}\cos \phi, \tag{14}
$$

since $2\theta = \pi/2 - \phi$ under the failure condition.

 \blacktriangleright Plugging [\(13\)](#page-10-0) and [\(14\)](#page-10-1) into the sliding condition, we get [\(12\)](#page-10-2).

KORK EX KEY OR ABY

► In a narrow taper (i.e., $\alpha \ll 1$ and $\beta \ll 1$), σ_1 and σ_3 are approximately horizontal and vertical:

$$
\sigma_{xx} \approx \sigma_1 \approx -\frac{1+\sin\phi}{1-\sin\phi} \rho g z, \tag{15}
$$
\n
$$
\sigma_{zz} \approx \sigma_3 \approx -\rho g z. \tag{16}
$$

KORKARRA EX KEY EL POQO

▶ The traction acting on the sidewalls then reduces in this approximation to

$$
\frac{d}{dx}\int_0^H \sigma_{xx} dz \approx -\frac{1+\sin\phi}{1-\sin\phi}\rho gH(\alpha+\beta),\tag{17}
$$

where we have used the relation $dH/dx = \tan(\alpha + \beta) \approx \alpha + \beta$.

 \triangleright Substituting [\(17\)](#page-11-0) into [\(11\)](#page-9-2), we obtain the approximate critical taper equation for a dry sand wedge in front of a bulldozer:

$$
\alpha + \beta \approx \frac{1 + \sin \phi}{1 - \sin \phi} (\beta + \mu_b). \tag{18}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

 \triangleright The critical taper, $\alpha + \beta$ is proportional to the basal friction coefficient, μ_b ; inversely to the internal friction angle, ϕ .

- ▶ Now, we want to consider the effects of pore fluid pressure on the stability of the wedge.
- ▶ Also, we want to get exact solutions.
- \blacktriangleright Here is the problem setting:

 \blacktriangleright The static equilibrium equation is

$$
\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xz}}{\partial z} - \rho g z \sin \alpha = 0, \qquad (19)
$$

$$
\frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{zz}}{\partial z} + \rho g z \cos \alpha = 0. \qquad (20)
$$

▶ Boundary conditions on the upper surface of the wedge:

$$
\sigma_{xz} = 0, \quad \sigma_{zz} = -\rho_f g D,\tag{21}
$$

where *D* is the water depth.

▶ It is convenient to define the generalized Hubbert-Rubey pore fluid to lithostatic pressure ratio by

$$
\lambda = \frac{p_f - \rho_f g D}{-\sigma_{zz} - \rho_f g D}.
$$
\n(22)

 Ω

 \blacktriangleright \blacktriangleright \blacktriangleright We assume that λ λ λ , ρ and the internal friction [co](#page-0-0)efficie[n](#page-22-0)t (μ [\)](#page-13-0) [ar](#page-15-0)e [al](#page-14-0)l con[sta](#page-0-0)[nt](#page-22-0)[.](#page-0-0)

- ▶ The density ρ is actually defined as $\rho = (1 - \eta)\rho_s + \eta \rho_f$. Since the rock (ρ_s) and fluid density (ρ_f) are constant, the constant aggregate density (i.e. constant ρ) implies a constant porosity, n .
- ▶ For convenience, we need to work out some more relations between stress components and other parameters.

▶ From geometry,

$$
p^* = -\frac{1}{2}(\sigma_{zz}^* + \sigma_{xx}^*),
$$
\n(23)

$$
R = p^* \sin \phi + S \cos \phi, \tag{24}
$$

$$
\sigma_{xx}^* = -\rho^* - R\cos 2\psi,\tag{25}
$$

$$
\sigma_{zz}^* = -\rho^* + R\cos 2\psi,\tag{26}
$$

$$
\sigma_{xz}^* = R \sin 2\psi. \tag{27}
$$

▶ From these relations, we derive the following expressions for later uses:

$$
\frac{\sigma_{zz}^* - \sigma_{xx}^*}{2} = -\frac{\sigma_{zz}^* + \sigma_{xx}^*}{2} \sin \phi \cos 2\psi + S \cos \phi \cos 2\psi
$$

\n
$$
\Rightarrow \frac{\sigma_{zz}^* - \sigma_{xx}^*}{2} = \frac{S \cot \phi - \sigma_{zz}^*}{\csc \phi \sec 2\psi - 1}.
$$
 (28)

$$
\sigma_{xz}^* = \tan 2\psi \frac{S \cot \phi - \sigma_{zz}^*}{\csc \phi \sec 2\psi - 1}.
$$
 (29)

▶ The following stress components satisfy the static momentum balance, the failure condition and the boundary conditions on the top surface:

$$
\sigma_{xz}^* = (\rho - \rho_f)gz \sin \alpha, \tag{30}
$$

$$
\sigma_{zz}^* = -\rho_f g D - \rho g z \cos \alpha, \qquad (31)
$$

$$
\sigma_{xx}^* = -\rho_f g D - \rho g z \cos \alpha \frac{\csc \phi \sec 2\psi_0 - 2\lambda + 1}{\csc \phi \sec 2\psi_0 - 1},
$$
\n(32)

provided that

$$
\frac{\tan 2\psi_0}{\csc \phi \sec 2\psi_0 - 1} = \left(\frac{1 - \rho_f/\rho}{1 - \lambda}\right) \tan \alpha.
$$
 (33)

 \blacktriangleright [\(33\)](#page-17-0) relates the stress orientation angle ψ_0 to the surface slope α ; we have assumed that ψ_0 is constant and have made use of the relation $dD/dx = -\sin \alpha$.

- \triangleright [\(30\)](#page-17-1), [\(31\)](#page-17-2), [\(32\)](#page-17-3) are an exact solution for the state of stress in a sloping half-space on the verge of Coulomb failure.
- \triangleright All that remains is to satisfy the basal boundary condition. Allowing for a different pore-fluid regime (like a different porosity) on the décollement fault, we have this boundary condition for the base:

$$
\tau_b = -\mu_b (\sigma_n + \rho_{tb}), \qquad (34)
$$

KORKARA KERKER DAGA

where p_{th} is the pore-fluid pressure on the base and μ_b is the basal coefficient of friction.

 \triangleright Expressing the basal shear and normal stress in terms of stress components in the $x - z$ coordinate system:

$$
\tau_b = 1/2(\sigma_{zz}^* - \sigma_{xx}^*) \sin 2(\alpha + \beta) + \sigma_{xz}^* \cos 2(\alpha + \beta), \tag{35}
$$

$$
\sigma_n = \sigma_{zz}^* - \sigma_{xz}^* \sin 2(\alpha + \beta) - 1/2(\sigma_{zz}^* - \sigma_{xx}^*)[1 - \cos 2(\alpha + \beta)].
$$
 (36)

- \triangleright [\(30\)](#page-17-1), [\(31\)](#page-17-2), [\(32\)](#page-17-3), [\(35\)](#page-18-0) and [\(36\)](#page-18-1) are used to determine the dip of the surface on which the frictional sliding condition [\(34\)](#page-18-2) is satisfied.
- **►** After some algebra, β is given by

$$
\alpha + \beta = \psi_b - \psi_0,\tag{37}
$$

where

$$
\frac{\tan 2\psi_b}{\csc \phi \sec 2\psi_b - 1} = \mu_b \left(\frac{1 - \lambda_b}{1 - \lambda} \right). \tag{38}
$$

 \triangleright [\(37\)](#page-19-0) is the exact critical taper equation for a homogeneous noncohesive Coulomb wedge.

- \blacktriangleright Here is the usual procedure we take to play with the above critical taper equation.
	- 1. We can start from [\(38\)](#page-19-1) to find ψ_b from μ_b and λ_b .

$$
\frac{\tan 2\psi_b}{\csc \phi \sec 2\psi_b - 1} = \mu_b \left(\frac{1 - \lambda_b}{1 - \lambda} \right).
$$

2. Then, assume a value of the surface slope, α , to get ψ_0 from [\(33\)](#page-17-0).

$$
\frac{\tan 2\psi_0}{\csc \phi \sec 2\psi_0 - 1} = \left(\frac{1 - \rho_f/\rho}{1 - \lambda}\right) \tan \alpha.
$$

3. Since ψ_h , ψ_0 and α are known, we get β from the taper equation, [\(37\)](#page-19-0).

$$
\beta = \psi_{b} - \psi_{0} - \alpha.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

 \triangleright Once we get all these angles, we can predict the orientation of step-up from the basal décollement fault as well as that of backthrust faults.

Noncohesive Could

Diagram showing stable and unstable regions of dry sand Fig. 9. wedges having $\varphi = 30^{\circ}$ and $\varphi_b = 10^{\circ}$. Critical wedges labeled 1-8 are depicted in Figure 10.

5 accretionary wedge fails

6. combined normal and

7. surface at angle

 2990