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The Diffusion Equation

In this chapter we study the diffusion equation

- (uxx + uyy + uZZ) = p(xv .2, I)’

which describes a number of physical models, such as the conduction of heatin a
solid or the spread of a contaminant in a stationary medium.

‘We shall use this equation to introduce many of the sclution techniques that will
be useful in subsequent chapters in our study of other types of linear partial differ-
ential equations. To begin with, it is important to have a physical understanding of
how the diffusion equation arises in a particular application, and we consider the
simple model of heat conduction in a solid.

1.1 Heat Conduction

Consider a thin axisymmetric rod of some heat-conducting material with variable
density p(x) (g/cm®) (for example, a copper—silver alloy with a variable cop-
pev/silver ratio along the rod). Let A(x) (cm?) denote the cross-sectional area and
assume that the surface of the rod is perfectly insulated so that no heat is lost or
gained through this surface. (See Figure 1.1.) Thus, the problem is one-dimensional
in the sense that all material properties depend on the distance x along the rod.
We assume that at each spatial position x and time ¢ there is one temperature ¢
that does not depend on the transverse coordinates y or z. Let x; and x2 be two
arbitrary fixed points on the axis.

In the basic law of conservation of heatenergy for therod segmentx; < x < X,
the rate of change of heat inside this segment is equal to the net flow of heat through
the two boundaries at x; and X3, plus the heat produced by a possible distribution
of internal heat sources in the interval. Consider an infinitesimal section of length
dx in the interval x; < x < x. Using elementary physics, we have d (J, the heat
content in this section, proportional t0 the mass and the temperature:

dQ = c(pAdx)8, ' 1.1.D)
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where the constant of proportionality ¢ is the specific heat in cal/g®C. Thus, the
total heat content in the interval x; < x < x7 is*

X2
o) = f c(x)p(x)AX) (x, 1)dx. (1.1.2)
Xt

Next, we invoke Fourier’s law for heat conduction, which stat‘_es that the rat.e
of heat flowing into 2 body through a small surface element on 1ts.b01.mdary 1s
proportional to the area of that element and to the oum'zard 1.10rmal df:nvatwe of the
temperature at that location. The constant of propomon_aht)_( herf: isk ~ (cfalllcm
5°C), the thermal conductivity. Note that this sign convention mr%phes r.l_'xe mtu:_nvel_y
obvious fact that the direction of heat flow between two neighbon{lg points is
toward the relatively cooler point. For example, if the temperature increases as
a boundary point is approached from inside a body, then thej outward normal
derivative of the temperature is positive, and this correctly implies that heat flows
into the body.
N ;or the pfcsent one-dimensional exaraple, the net inflow of heat through the
boundaries x; and x; is

29
R() = Ax2)k(x2) gg (e2, £) = AGRR(x1) 5= (51, 8)- (1.1.3)

Leth(x, t) (cal/g s) denote the heat produced per unit mass a_nd time by the sources.
Thus, the total time rate of heat production by the sources is

H(@) = fx: hix, Dp(x)A(x)dx. (1.1.4)

X1

Froure 1.1. Thin axisymmetric heat conductor

* In this text we shall often use the notation == instead of = when it is impon.ant to if:dicatc that a new
quantity is being defined, as in (3.1.1} and (1.1.2). As a special case of this notation, the statement
fix, y) = O indicates that the function f of x and y vanishes identically; that is, it equals zero for all
x and y by definition.

1.1. Heat Conduction 3

The conservation of heat then implies

a9
i R(t) + H(z), (1.1.5)

or
X2

d
7 c(x)o(X) A8 (x, )dx = Ax)k(xz) % (x2, 1)
t Je 9x

X2
— A(x))k(x)) g—g (x1, ) +[ h{x, )p(x)A@x)dx. (1.1.6)
X1

Equation (1.1.6) is a typical integral conservation law, which has general
applicability. For example, (1.1.6) remains true if material properties have a dis-
continuity at a given point x = £ inside the interval, as would be the case if we had
a perfect thermal bond between two rods of different materials. We shall encounter
other examples of such conservation laws later on in the book and shall study how
discontinuities propagate in detail in Chapter 3. ,

For smooth material properties, that is, if ¢, p, A, and k are continuous and
have a continuous first derivative, the solution B(x, t) is also comtinuous with
continuous first partial derivatives 39 /dx and 36 /9t, and we may rewrite (1.1.6)
in the following form after we express R(2) as the integral of a derivative:

/ { AR S (1) = [A(x)k(x) ¥ r)]
X Iz Ix ax
— h(x, r)p(x)A(x)} dx = Q. (1.1.7)
Since (1.1.7) is true for any x, and x», it follows that the integrand must vanish:
ag
c(x)p(x)Ax) 3 ..?_. ,:A(x)k(x) 9-?-] = h{x, Dp(x)A(x). (1.1.8)
t dx ax

For constant area and material properties, this reduces to

36, 8%
-—a—; bl 4 5;5 = o(x, 1), (119)

where k% = k/fcp (em¥/s) is the thermal diffusivity and ¢ = h/c. The dimen-
sionless form of (1.1.9) follows when characteristic constants with dimensions of
temperature, length, and time are used to define nondimensional variables.

For example, let us study (1.1.9) for a rod of length L that is initially at a
constant temperature 6y and has one end, x = L, held at § = 6o while the other
end, x = 0, has a prescribed temperature history 80, 1) = 6y f(¢/T), where T is
a characteristic time scale. For simplicity assume ¢ = 0. We set

2
g . X tx

— *

—,xm”"‘,I:"““‘,
“= % L &

It

and obtain the following dimensionless formulation:

3 h
é"?; - 5;33‘5 =0, 0<x* <1, (1.1.10a)
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u(x*, 0) =1 (1.1.100)
u(0, 1) = fGu™), >0, (1.1.10¢)
u(l, ")y = 1, (1.1.10d)

where ) is the dimensionless parameter L?/(x*T). The original dimensional
formulation of this problem involves the four constants «, &, L, and T. The
dimensionless description is considerably simpler, as it involves only the one pa-
rameter A. Once the dimensionless problem has been solved, say u = Ux*, t*),
the dimensional result is easily obtained in the form

x  ti?
B=U| —, =5 ]-
The corresponding derivation for three-dimensional heat conduction follows

from similar steps. If a solid occupies the domain G with surface § and outward
unit normal m, as shown in Figure 1.2, the total heat content of the solid is given

by
Qi) = fcffcp(? dav, (1.1.1D)

where dV is the volume element; for instance, dV = dxdydz in Cartesian
variables. The net inflow of heat through the boundary S is

R(@) = ffkgrad@ -ndA. (1.1.12)
N

We can express R(t) in terms of a volume integral over G using Gauss’ theorem. '

This theorem states that if F is 2 one-valued vector field with continuous first partial

FiGure 1.2. Three-dimensional heat conductor

1.2. The Fundamental Solution 5

ffF -ndA = [ffdiv FdV. (1.1.13)

3 G

Therefore fér a medium where ¢, p, and k are smooth, we i i 1
N b ] » ¥ ldentl F 4 | }..1 . }. 3
with & grad €, and (1.1.12) becomes yEn )

R() = fffdiv(k grad )dV. (1.1.14)
G

Also, since G is fixed in space we have

aQ  d
o =4 f[fcpedv = fffcpe,dv- (1.1.15)
G

G

derivatives in G, then*

The conservation law of heat energy (1.1.5) becomes

/&[fcpe,dv = f-c[fdiv(kgrade)dV +'/th,oa‘v. (1.1.16)

.Then‘efore, assuming continuity of the integrands in (1.1.16), the three-
dimensional version of (1.1.8) is
cpb; — div(k grad 8) = hp. (1.1.17)
For constant &, this reduces to

6, — KPA0 = o, (1.1.18)

w:here k= kfcp),oc = h /¢, and A is the Laplacian operator A == div grad
given by ’

3% 32
___.i...i._

A e
dy 7322

i

32
—3—;"; + (1.1.19)

in Cartesian coordinates.

1.2 The Fundamental Solution

The ﬁz’ndame:?ml solution of a second-order partial differential equation is just
Greey s fun'ctxon for that equation over the infinite domain with zero boundary
conditions (if appropriate) at infinity. See Appendix A.] for a review of the use of

Thus, in writing R(:) in the form given in (1.1.7), we have used the “one-dimensional version™ of

Gauss' theorem relating the definite integral of the derivative of 2 function to values of the function at
the endpoints. .
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Green’s function in ordinary differential equations. For example, the fundamental
solution of the one-dimensional diffusion equation obeys

Uy = gy = 8(x — E)8( — T) ' (1.2.1)

on—oc < x < 00,0 <t < oo, where § and t are fixed constants, {§| < co,
0 < T < o0, and § denotes the Dirac delta function. We may interpret (1.2.1)
physically as the equation governing the temperature in an infinite conductor that
is subjected to a concentrated unit source of heat at the point x = &. This source
of heat is tumed on only for the “instant” ¢ = 7 and is absent for all other times;
its location is also concentrated at the point x = §.

Prior to the application of the heat source, the conductor has a constant
temperature that we normalize to equal zero. Thus, the boundary conditions are

u(x,t) - 0 asix} — o0, (1.2.2)

and the initial condition is
i u(x,t) =0; 021 <. (1.2.3)
The solution of (1.2.1)~(1.2.3) is the fundamental solution, which is a function

ofx —fand? - 1,

= Flx -~ §,t—1). (1.2.4)
There is no loss of generality in taking the initial and boundary temperatures
equal to zero in (1.2.2)-(1.2.3); any constant value i can be used and then reduced
to (1.2.2)~(1.2.3) by simply considering the new dependent variable u — uo. This
is a consequence of the absence of nondifferentiated terms in (1.2.1). Also, since

the left-hand side of (1.2.1) does not involve x or z, we need only consider the
simpler problem correspondingto § = 7 =0

i — Uy = 8(x)8(2), (1.2.5)
w(x, 07y =0, . (1.2.6)
u(x,t) - 0 as x| —-c0. (1.2.7)

Once the solution u = F(x, 1) of (1.2.5)-(1.2.7) is found, the general result
F(x — &,t — 1) is obtained by translation.

In Section 1.3 we shall show that once the fundamental solution is known, we
can solve the following general initial-value problem for the diffusion equation on
the infinite domain

U, ~ gy = px,1); —0 <x <00; 051 <09 (1.2.8)
u(x, 0) = f(x), ‘ (1.2.9)
u(x, 1) = f(koo) asx — =koo, (1.2.10)

where p and f are prescribed functions and p(x, t) = 0ift < 0.

In the next three subsections we derive the fundamental solution F using differ-
ent techniques that have a broad range of applicability in solving partial differential
equations.

1.2. The Fundamental Solution 7
1.2.1 Similarity (Invariance)

'In this very useful approach, we ask under what scalings of the dependent and
independent variables the system (1.2.5)-(1.2.7) is invariant. If such scalin g5 exist,
we can reduce (1.2.5) to an ordinary differential equation in terms of a “similarity”
variable using arguments that go as follows.

Assume that we have found the solution of (1.2.5)-(1.2.7) in the form u =

F (.XE, r)._Is it possibls to use this result to obtain a second solution # = G(x, 1) by
setting X = Sx and ! = y7 and defining G by

G(x, 1) = aF(Bx, yt) (1.2.11)
for positive constants «, 8, and ¥?

We compute G, = ay Fr, Gur = af?Fzz, and use of the fact that for any
constant ¢, we may set (See (A.1.16))

1
d(cx) ~> !—aa(x). (1.2.12)
If G(x, t) is to be a solution of (1.2.5)~(1.2.7), we must have
G, —Grx = 8(x)8(8), G(x,07) =0, G{x,1) = 0 as|x| — oo. (1.2.13)

Expressing G, and G,, in terms of F and Fis and usin S(x)é(t) =
SGE/BYSGE/y) = Prs@o@ in (12.13) gives :

ay F; — af’Frz = Bys@s®,
aeF X, 07) =0, -‘,‘__a:FGc',E) -0 as|x| = oo,

B? B .
E-2r.:=(5)sm®
(y) (a)axa(ﬂ’

FXx,07)=0, FGE,T) > 0 as|x] — oc.

But we know that F (%, 7) must satisfy (1.2.5)-(1.2.7) in terms of the ¥, ¥ vari-
ables. Therefore, ng, 1), asdefined by (1.2.11), can be a solution onlyif f2/y == 1
and f/a = 1;thatis, if 8 = @ and y = «®. Thus, (1.2.11) must be of the form

or

G(x, 1} = aF(ax, ¢*1). (1.2.14)

Ha\_fe we discovered anew solution of (1.2.5)—(1.2.7)? Of course not; the solution
for this problem is unique, G = F, as is physically obvious and can be proved.

Therefore, (1.2.14) is just a statement of the similarity structure of the solution F,
and (1.2.14) must read

o F (ex, a?t) = F(x, 1). (1.2.13)

That is to say, if we replace x by ax and ¢ by &%t in F and then multiply the result
by a (forany « > 0), the resulting expression is identical 10 F (x, t). This property
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o

. ' L
implies that F(x, t) must be of the form }l\ EAVAY

Fio,t) = —%f(%) or%g(f;), ori—h(%),...

for certain functions f, g, &, . . . of the indicated arguments.

Any one of an infinite number of possibilities that satisfy the similarity condition
(1.2.15) may be used. Each choice will reduce (1.2.5) to an ordinary differential
equation, which, when solved, will give the same result for F. Letus pick the form

1 X 7,
anr == 1 E - IV ' L
( ) —\/I- f (g) C -\/? . _‘\ L‘L;"J -, -U( f
BRI S SE E
‘We compute PRI s
1, R T 1 x
Fx——‘t‘f, Fxx—;gﬁf,F:*;"Wf“aﬁf,

where ' = d/d¢.

Since the delta function on the right-hand side of (1.2.5) is identically equal to
zero for ¢ > 0, we need to solve only the homogeneous diffusion equation for
t > 0. However, the initial condition u{(x,07) = 0 in (1.2.6) does not remain
valid for ¢ = 0F. (If it did, the result would be the trivial solution u(x, t) = 0.)
The effect of the delta function on the right-hand side is to generate impulsively a
nonzero value for u(x, 0%) (see (1.2.22)), which is the appropriate initial condition
to be used in solving the homogeneous equation (1.2.5) for z > 0.

Consider now the homogeneous version of (1.2.5). Using the results we
computed for F and its derivatives gives

1 x 1
~gnl m gl Rl =0

which is the linear second-order ordinary differential equation

e 1
z " 2f+ = f=0 : 1.2.16
5 feSF 5 f (1:2.16)
" with the independent variable {.
n ., Integrating once gives f'+ (£/2)f = A = constant, and the solution of this is
.
5%, o 2 L 2
A, f=Ae™ [ & /%ds + Be™%"/*, B = copstant.

The constants A and B are determined by considering the total heat content H ()
in the bar. In terms of our dimensionless units, the total heat is just the integral of
the temperature:

H(i) = fm F(x, dx
- (1.2.17)

A [= x B [ _.
—_ —x* [
—ﬂ_[.mfl(ﬁ)dx+\/f[_me ax.

1.2. The Fundamental Solution 9
where we have defined

2

- ¢ 12 /4
fi@) = €51 f & hds = g8 f o= gg.

Integrating the second expression for f, by parts shows that (see Section A.3.5)

2
@)= =+ 0G™) aslz| — oo

Therefore, (1//1) %2 f, dx in (1.2.17) is unb i
be D . °6 Jigxin p] ounded. Since the total heat must

B 2
B2 e @Y
F er > 0. (1.2.18)
The ideanow is to pick B in order to satisfy (1.2.5) i
_ ‘ ' 2.5)att = Q*, If we differentiate
the integral defining A (r) in (1.2.17) with respect to 7 and use (1.2.5), we obtain
dH o0 o
G = _rwoa= [ [Pl ) + 55001,

50 that

dH
7 = Fx(00, 1) ~ Fr(—00, 1) +8(1) = 8(2),

because the tem_perature gradient at oo due to a unit source must be zero
Therefore, H (t) is the Heaviside function (see (A.1 A4), and fore > 0, we have'

1_.f°° Z e
- [ E, _
7 x (1.2.19)

Thus, after s*::vuching on a unit source of heat for an instant at the origin, the total

heat content in the rod remains constant, and this constant can be set equa,l to uni

under an appropriate nondimensionalization. Y
We can rewrite (1.2.19) as

1 =28 f e ®
= d ford ""Ez —
oo 41 x ZB.[ € d§ = 2B,

—0c
or
1
B = e
27’

and the fundamental solution is

Fo 1) = i gms/ 1.2.20

N ) (1.2:20)
More generally, the solution of (1.2.1)~(1.2.3) is

1

F(X"E,I“I)=m
Vrt -t

N2 A
¢l eA, (1.221)
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It is important to note that the use of similarity is not restricted to linear problerns.
For example, a classical use of similarity arguments is provided by the boundary-
layer equations for viscous incompressible flow over an infinite wedge (or the
special case of a semi-infinite flat plate if the wedge angle is zero). See Section
B.14 of [31]. Here, the nonlinear partial differential equation for the flow stream
function is reduced to a third-order nonlinear ordinary differential equation.

A crucial requirement for the applicability of similarity arguments is that both
the governing equations and initial and/or boundary conditions be reducible to
similarity form. In the preceding example, this was trivially true for the given
initial condition F = 0, as this also immediately implied G = 0. For further
reading on similarity methods, see [6] and [41].

The fundamental solution (1.2.20) can also be derived using Fourier or Laplace
transforms. A review of these techniques appears in Appendix 2, where this
problem is used as one of the illustrative examples.

1.2.2 Qualitative behavior; diffusion

Figure 1.3 shows three temperature profiles for F(x, £) given by (1.2.20) taken at
three successive times 0 < 1, < fp < f3. In each case, the area under the curve
is, according to (1.2.19), equal to unity. For ¢ smaller and smaller, the contribution
to this area becomes more and more concentrated at the origin. This is just one of
the many possible representations of the delta function (for instance, see {A.1.11b)
with A = 4t), and we may write

Fx, 0%) = §(x). (1.2.22)

Equation (1.2.22) also follows by integrating (1.2.5) with respect to ¢ fromz = 07
to ¢t = 0T and noting that foo_ Weedt = 0.

The fundamental solution can be used to give a precise definition of diffusion.
First, notice that if we regard the source at x = 0 as a disturbance introduced at
time ¢ = 0, the “signal speed” due to this disturbance is infinite because for any
positive ¢, 10 matter how small, the value of u is nonzero for all x. Thus, the entire
rod instantly “feels” the effect of the source. Of course, a real temperature gauge
would fail to detect the very weak disturbance at large distances. Thus, the idea of
a signal speed is not very useful in this case, and we would like to have a better
characterization of how the rod “heats up” for > 0. Suppose we ask instead
where a given fraction of the total heat in the rod is to be found at any specified
time. We know that at 7 = O, all the heat is concentrated at the origin. For any
¢ > 0, the heat is nonuniformly distributed over the entire rod with the maximum
temperature at the origin, as shown in Figure 1.4.

Suppose that d is a fixed constant with 0 < d < 1. At some time ¢t > 0, the
temperature distribution is the even function of x given by {1.2.20) and sketched
in Figure 1.4. The shaded area represents the fraction & of the total area {(which
cquals unity). Thus, as ¢ increases, so does x4- The question is, how does x4 depend

1.2. The Fundamental Solution il

o
ol

f3

4

- x

FIGURE 1.3. Fundamental solution for the temperature at three different times

on t? It follows from (1.2.20) and symmetry that

2 2
_ ~a*f4r
2Jxe Jy do,
or, changing variables, that |
) X2 /25T
d = m-—f e.._,:,id = ( %d
n= erf [ ——
=, 57 ) (1.2.23)
F

I=constant

FIGURE 1.4. Interval {—x,, X4) containing the fraction ¢ of the total heat
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where the error function erf is defined in (A.2.76). Since the left-hand side of
(1.2.23) is a constant, we conclude that xz/2+/ remains constant as £ increases.
Therefore, x4 ~ /T, and we say that heat due to a point source at x = 0,7 = 0
diffuses according to x| ~ JI.

Problems

12.1. Consider the diffusion equation with variable coefficient
2xu; — gy =0, 0 x <00, 120, (1.2.24)
with boundary conditions
1{0, 1) = C| = constant ift > 0, (1.2.25a)
u{oc, 1) = Cp = constant ift >0, (1.2.25b)
and imitial condition
u(x,0) = C3 = constant. (1.2.26)
a. What is the most general choice for the constants Cy, Ca, and C; for
which the solution of the above initial- and boundary-value problem can
be obtained in similarity form?
b. For the choice of constants obtained in part (a), calculate the solution and
evaluate all integration constants explicitly.
1.2.2. Use similarity to reduce the following initial- and boundary-value problem

for a nonlinear diffusion equation to an ordinary differential equation and
corresponding boundary conditions:

Upe —u; =0, 0<x, 051, (1.2.27)
u(0, 1) =0, (1.2.285)
(oo, 1) =1, (1.2.280)
(e, ) = 1. (1.2.29)

Discuss the behavior of the solution.

1.2.3 A semi-infinite bar (x > 0) insulated everywhere except at x = 0 loses
heat to the adjacent medium (x < 0) by blackbody radiation according to
the boundary condition ‘

040, 1) — 83 = b, (0, 1), t > 0, (1.2.30

where ¢ is a constant (equal to the conductivity divided by the product
of the emissivity and the Stefan-Boltzmann constant), 8y is the constant
temperature of the medium, and 8 (x, t) is the temperature at the point x
and time ¢ in the bar. Equation (1.1.9) with o = 0 govems the temperature
distiibution in x > 0, and we assume that the initial temperature is given

1.3. Initial-Value Problem in the Infinite Domain; Superposition 13

in the form

X
6(x,0) =6, f (E‘) (1.2.31)

0
where 0, is a characteristic temperat i
4 .
The boumlany s 1T ;;0 o re and Ly is a characteristic length.
B{z0, ) = 6, f(e0) < co. (1.2.32)

a. Introduce appropriate dimensi i
sionless variabl *
(1.2.30)-(1.2.32) to the form P 3T 710 xeduce

du 3%u
“——ar* "é;‘;z- = 0, (1.2.33&1)
* 1 *
ux®, ) = Ef(x ) (1.2.33p)

ud- 0, ) — __?E_ * *
{ Yy —~1 kax* (0,t%), =0, (1.2.33¢)

w1
u(00, 1) = — f(c0), (1.2.334)

where € and A are dimensionless constants.
b. What does the limiting case

A 3 A
> 1, e®1l, Ae’ = constant = A = o), (1.2.39

describe physically? Since u is initially large, it is appropriate to consider

the rescaled dependent variable &
S U = —
leading order, % satisfies u/€, where @ is O(1). Thus, to

o %

a2 =0 (1.2.34a)
ux*, 0) = f(x*), (1.2.34b)
-—d4 w3 ou *
740, ") = lax* 0,2 + 0%, t* >0, (1.2.34c)

#(oo, 1) = f(00). (1.2.344)

c. 1l:or \g‘lat F (J.C*) (possibly_ singular) can (1.2.34) be solved by similarity?
or s choice of f derive, but do not solve, the ordinary differentia:l
equation and boundary conditions governing the solution.

1.3 Initial-Value Problem in the Infinite Domain:
Superposition ,

The general inijtial-value problem f i
- o cer s .o
i ponerel inita p r the inhomogeneous diffusion equation in the

Uy — Uyy = p(x,1), —c0<x <00, >0, (1.3.1a)
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u(x,0Y) = fx), (1.3.1b)

where p and f are arbitrarily prescribed functions with p = 0ifr < 0. For heat
conduction, p represents 2 dimensionless heat-source distribution, and f an initial
temperature distribution.

Because of linearity, the solution of (1.3.1) can be expressed as the sum of the
following two problems:

Uy — gy = plx, 1), —O0 <X <09 t =0, (1.32a)
u(x,07) =0, (1.3.25)
U, —Uge =0, —00 <X <00, ! >0, (1.3.3a)
u(x, 0M) = f(x)- (1.3.3b)

We now show that knowing the fundamental solution F(x — §,1 = T) allows
us to write the solution of the first problem immediately in terms of a “superpo-
sition integral” The derivation of this superposition integral is a straightforward
generalization of the single-variable case discussed in Appendix 1 (see (A.1.23)-
(A.1.28)). We consider the solution of (1.3.2) arising from the contribution of p
coming from a smalil necighborhood of the fixed point x = §,t =T, with p set
equal to zero everywhere outside this neighborhood. Let R(§, ©) denote the small
neighborhood § — A§/2 = x = £+ AE/2,T—AT/221 =T + At/2, over
which we may regard the valve of p as the constant p(&, ).

If p denotes the incremental contribution to p from R, we have the following
expression defining p:

f)Ep(é,f)l:H(r_r+ %ﬁ)—ﬂ(rwf‘_%_‘)][ff(x,g_k%i)
- # (’“’5“" %i)] (1.3.4)

where H is the Heaviside function, and the bracketed expressions ensure that
the lefi-hand side vanishes outside R and equals p in R. We now multiply and
divide this expression for p by ATAL and observe that since dH /ds = §(s), the
first bracketed expression divided by At represents §(f — T), whereas the second
bracketed expression divided by AE represents §(x — £). Therefore, in the “lirnit”
as At — 0, AE — 0, we have

B = p(E, D)8 — D3 — §)dr d§. (1.3.5)

Since the solution of the diffusion equation with right-hand side 8 (¢ - )8{x — &)
is the fundamental solution F{x — &, ¢ ~ 7) defined in (1.2.21), linearity implies
that the solution due to the right-hand side p is just

i = p(&, T)F(x — &t —1)dr d§. (1.3.6)

Linearity also implies that we may SUperpose the % contributions axising from
each of the infinitesimal domains R that cover the half-space —o¢ < § < 00,

Probiems 15
0 = v < 1, and this leads to the desired superpozition integral

u(x, i) = £=_w ./;=0“ Flx — &1 —1)p&, v)dr dE

o ¢
_ PE, 1)
= - ALLEP NPT ¢ S LT TR
] v/.;:—-—oo fr=o~ W r),,e Ydrdt. (137
‘0 confirm this formal derivation, it i
_ A , 118 easy to ici
(1.3.2); this is left as an exercise (Problem 5.3-1\)’?“}/ PPl hat (1:37) solves
To solve (1.3.3), we note that it is equivalent to

Up = Uy = 5(I)f(x), -0 <x<oo =0, (1-3.802)

u(x, 0_) = 0, (1 3 Sb)

as . . . .
. _g?;a[;iv \;;?if;c; :C); ?:??ri iz;t mtggraung theinhornogcneous diffusion equation
138 s =0"t0¢ = 0" givesu(x, 0+) = i
?fht ;1andls1de of (1.3.8a) vanishes whenz > 0, (1.3.3) and (1).3.8)‘);1('23. Sun:;? e
solve (1.3.8), we set p(%, 7) in (1.3.7) equal to &(1) f€)yand obtainq eent

o

1
27t J; F&)e~ g, (1.3.9)

=00

u(x, 1) =

stesultcan also be derived using ransforms (see (A.2.32)-(A.2.36) foraderiva-

tion using Fourier transforms). Th : .
solutions (1.3.7) and (1.3.9). )- Therefore, the solution of (1.3.1) s the sum of the

Note that
) 00 —(x =52 4r
w(x, 0%y == :E&[ f&® E—EJ_?E“dg’ (1.3.10)
and according to (1.2.22), this is just
w0 = [~ @86 - 9t = fe0), (13.11)

which is the correct initial condition. -

We . o -

e c;an alsohvenfy that the }ruual condition is satisfied by the following alter-

nady pproac tha:t does not involve use of the delta function. We write (1.3.9

(; +e sum of three mtfagrals over the intervals (~o00, x — €) (J.C -, x 4 e). : ?:i

& inf, ﬁ)’ where € is an arbitrarily small, fixed positive number. ,As t —-e: ?)Ii
egrals tend to zero except over the interval (x — €, x 4+ €). Thus ,

. Xbe e (—E)2 /8¢
u(x, 0+ = I f €
) :-—1»3_-%1* e f&) 2/t d§. (1.3.12)

Changing the variable of integration from £ to & = (x — £)/2:'/2 gives
N
u(x, 0) = lim —= f /e,
=0t ST )T Flx + ovdne ™ do

L9 [
7= _ooe do = f(x). : (1.3.13)



16 1. The Diffusion Equation

Problems

i i 1.3.7
3.1. Verify by direct substitution that the sum of the expressions given by )
e and (1.3.9) solves the initial-value problem (1.3.1).
1.3.2a Specialize (1.3.9) to the case where
e, —€ <X <E, 1.3.14)
1/2¢, (
fe = 0, x| > €,

and show that the solution reduces to

1 x+ey x-—e)], (13.15)
u(x,t):-—-—ze—[erf(zﬁ) crf(zﬁ

. . . 2.76).
o o cn:) r—il rg:lh(:;::ﬂltsi: ??gﬁsl;ltéﬁdi o t)he fundamental solutt:';on
> S;lg“;g)la;:ixpected, since (1.3.14) is arepresentation of tl_-xe fie]::«(l fuz'ngo;m
Es;ae- (A.,1.3)), and the solution (1.3.9) with f (x) = fi 5-3;21 ;s lﬁf\rmg 20

1.2.3. Specialize (1.3.7) to the case where pix, ) 1s aunt

p(x,1) = §(x — vt}, v = constant. {1.3.16)

i-infini in; n’s
1.4 Problems in the Semi-infinite Domain; Gree
Functions
i-infinite ith a prescribed
i iffusi i the semi-infinite interval wil
I g e atr = 0,11 overful frst to consider the solution that results

i — 0. it is use
ary condition at x = 0,itisu - . o)
?rouni uni:ZOurce somewhere in the domain and subject to 2 homoge {
om

l)t Ul l(l COT ldition at the ngln. Th}S S 11113011 1 ‘B T
f the ﬁISt kin-d- G[ or Second k.ind G‘.z, dependlﬂ-b on hi 'h'at thz tc v nia“[)
Q ? kd ?

conditionatx = Oisu = 0oru; = 0.

1.4.] Green's Function of the First Kind

e case where ¢ = 0 at the origin; that is, we seek the solution for
Ad.la

Uy — Urx = §(£)8(x ~ §) (1 ) )

with & equal to a positive constant, and impose the boundary

Consider first th

on < x < o0,

ondition
c u(0,) =0, t >0, (1.4.1b)
and initial condition oo =0 et

i hall take
Unless stated otherwise, we S bou e
gae the same as the limitas x — o¢ of the initial value. Th

we have u(oo, 1) = u(oe, 0) = 0)

1.4. Problems in the Semi-infinite Domain; Green’s Functions 17

Thus, we have introduced a concentrated unit vource of heatatx = £andr = 0.
(Note that we can derive the solution for the case where (1.4.1) involves §(r — )
by replacing ¢ everywhere in the solution by # — .) The rod is initially at zero
temperature, and its left end is maintained at zero temperature for all time, for
example, by attaching this end to an infinite solid of Zero lemperature.,

The only difference between this problem and the fundamental solution is the

fact that we require u to vanish at x = 0 and x —> oo instead of x — oo,

Thus, Green’s function is the response to a source with a homogeneous boundary
condition imposed at a finite point.

An intuitively appealing procedure invokes symmetry relative to the origin to
construct the solution once the fundamental solution is known. (This is often called
the method of images.) :

Consider the temperature that results in the infinite domain if we turn on a
positive source of unit strength at x = & and t = 0, and simultaneously tarn on a
negative source of unit strength at x = ~&, the image point.

At any time ¢ > 0, the temperature in the rod will be the sum of the two
temperatures F(x ~ &, 1) and —F (x + §, 1), corresponding to the positive and
negative sources, respectively. These individual temperature profiles atsomez > 0
are sketched in Figure 1.5. In particular, the combined temperature will always
vanishatx = O fort > 0, by symmetry. Moreover, since the image source is
located at x = —, outside the domain of interest, the combined temperature
satisfies (1.4.1a). Therefore, the solution of (1.4.1) is Green’s function:

Gi(x,§,8) = F(x —£,8) = F(x + £, 1), (1.4.2)
where F is defined by (1.2.20).

itionforu atx = cO O
e boundary condition
b in the present case,

—Fix + £ 8

FIGURE 1.5, Temperature due to a unit positive source at x =
atx = =f

£ and a unit negative source
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More generally, the solution of
Uy — Uz = 8(x — )8 — 1), £>0, >0, (1.4.3)

with initial condition (x, t™) = O and boundary condition (0, 1} = Ofort >t
and x on the semi-infinite interval 0 < x < oo is Green’s function of the first
kind for the semi-infinite domain and has the form

1 2 2
Gi(x. 6,1 —7) = ek gD (144
(61— D) = ] 1 (144

1.4.2 Homogeneous Boundary-Value Problems

Consider the following inhomogeneous diffusion equation with zero initial
condition and komogeneous boundary condition:

up — yy = plx, 1), 05x, 051, (1.4.5a)
u(x, 07y =0, (1.4.55)
u(©,1) =0, t>0. (1.4.5¢)

The superposition idea leading to (1.3.7) also applies for this case, and we have

ufx, 1y = fr dr foo plE, ©)G1(x, &, 1~ T)dE. (1.4.6)
- 0

1t is important to bear in mind that Green’s function and the desired solution of
(1.4.5) must both satisfy a zero boundary condition at the origin in order for the
superposition idea and the result (1.4.6) to make sense. Forexample, if G, (0, &, £ —
) % 0, then (1.4.6) does not satisfy (1.4.5¢). Conversely, if we wish to solve the
problem (1.4.5) with the right-hand side of (1.4.5¢) replaced by some prescribed
function g(r), the representation (1 4.6) fails, since it automatically has u(0, 1) =
0. We shall see in Section 1.4.3 that this case is easily handled once the problem
is transformed to one with a zero boundary condition at the origin.

Consider now the case where the initial condition (1.4.5b) is prescribed
arbitrarily. Since the homogeneous problem

u ~ U, =0, 0=x, 0=<i, (1.4.7a)
with nonzero initial condition
u(x, 0" = fx) (1.4.75)
and homogeneous boundary condition
w(@,8) =0, t >0, (1.4.7¢)
is equivalent 1o

ty — tgg = S f(X) (1.4.8)

1.4, . A
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with (x 0~} = 0 and u(0, )
? 1 = 0, - .
the result (1.46) with p = 5() £ (&) e o Of (1:47) using

«,0= [ [ 607 ©616, 5 1 - eas = [ 1@ 5.0a
0 ’ )

F .
or the special case where f(£) = c, a constant, (1. 49) gives (1.4.9)
[

=4}
u(x, ) = NES [ fc e~ G A ge f ” e“<*+¥>2/“’d§] (1.4.10)
\ . 4.

Cll.anging the variable of in ion fr

. tegration from § to n = 1/ s
b = (x . n = (x — &)/t

integral and to 7 = (x + £)/2:'/2 in the sec inte (resulé)'/ t*/“ 1n the first

c 0 -
U, 1) = —— m/ i © %0
\/-J’?{ J:/?,\/Ee d”“l e nd?]-—*/ e_ﬂzdn .
~

. /2T
'i[lt]lz ()I’Ino[::;ftat;:; tg rx}:;:)t;1 tthat be_cause x — & vanishes for £ = x, which fsl :;;;)t
Simplifying this expres S;ci%)r;lgil\?e S(1.«-1-.11:3.) must be decomposed into two parts.
2c  fHWE

u(x, t) = Ty = o
7=, e dnmcerf(——m), (1.4.115)

whi i

;;e the error function erf is defined in (A.2.76)

o ;Oﬁzhtati’\; behavior of the s_olution (1.4.11) has u rising rapidly from i

zerot ary value to the asymptotic value # = ¢. Temperatur s
are sketched in Figure 1.6. ’ Fprofiesatvarions

FiGure 1.6. Temperature profiles at various values of ¢
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Notice that lim gy u(x,#) = ¢, in agreement with (L470), and hat and the system (1.4.16) is a special case of (1.4.5), with p(x, 1) = —3(r) —

B o #(x, £) = 0, in agreement with (1.4.7¢). In particular, w0, 0%) is
150
undefined, as is to be expected from (1.4.7b) and (1.4.7¢).

1.4.3 Inhomogeneous Boundary Condition u(0, 1) = g(t)

As pointed out in Section 1.4.2, the crucial requirement for 2pplying superposition
is that the boundary condition at x = 0 be homogeneous. Does this mean that we
cannot use Green’s functions to solve an inhomogeneous boundary-value problem?
We shall show next that if it is possible to ransform the problem to one with a
homogeneous boundary condition atx = 0 (asis often the case), 2 solution derived
by superposition of Green’s functions can still be used.

Consider the inhomogeneous boundary-value problem

U — gy =0, 02x <00, 051 <00, (1.4.12a)
with zero initial condition
u(x, 0"y =0, (1.4.12b)
and a prescribed boundary condition at x = 0
u(0, 1) = g(t), t >0 (1.4.12¢)

Again, in view of (1 .4.12b), it is understood that u(o0, t) = 0.

The ideais to transformu (x, ) toanew dependent variable w(x, t}, which obeys
a homogeneous boundary condition at the origin. Clearly, the simple homogenizing
transformation

wix, 1) = u(x, 1) — g) (1.4.13)
works, since w obeys the inhomogeneous diffusion equation
W — Wy = —g(t), >0, (1.4.14)

with constant initial condition

wix, 0%) = —g(0), (1.4.15a)
and zero boundary condition

w(0,t) =0, ¢>0. (1.4.155)
Note that w(oc, 1) = —g(t) if ¢ > 0, but this does not preclude superposition. A

problem equivalent to (1.4.14)~(1.4.15) is
Wy — wey = —&@) — g0, (1.4.16a)
wx,07) =0, (1.4.165)
w®©,0) =0, 1 >0, (1.4.16¢)

£(0™)8(z). Writing out the solution (1 .4.6) for this case gives

I o0 .
w(x, t) mf / 452 M SRc Yy AR Y
wdo 2VEG = 1) Le T — A d

oo o+
M [e—(x—§)2/4r . e_(,_._‘_g}z/&]dé-

e (1.4.17)
The solution (1.4.17} involves the two integrals
/- 1 o g=(xmE)?/4(t-1)
7 fg Wdé (1.4.18a)

and

1 [ gmx+¥/aG-1)
K= — d
N fo Wi §. (1.4.185)

In preparation for evaluati i i
L Iiv h};re is u.aung I, we set Fhe exponent in the integrand equal to
- s n Is a new vangble of integration. Again, we must be careful to take
o0 account the fact that this exponent vanishes at the point § = x > 0, which
?

;s\gs:)de{ the interval of integration. Thus, we first split (1.4.18a) into two integrals
= § =xandx = § < oo; then we change variables £ — 75 by setting

(x — S)/Z«/I_ ~ 1T = n,d§ = -2./t — tdy to obtain
i Q -0
7 = a2 2
N [[x/zﬁ,_r eam+ [ (“d’”]

1 x[2:/t7 o0
e —7)2 —pnd
7 fo € "’?+f0 e”dn}.

It then follows from the definition (A.2.76) of the error function that

2 W AR (1.4.18¢)

Since (x -+ £) does not vanish forx = 01 '
) if0 <t <« oo, .
by setting (x + £)/2+/T — 7 = 7 to obtain £ < oo, we evaluate K directly

1 o0
K = —m f e*nzd — }_ X
NG [ o ’?:I 5 erfe T==) (1.4.18d)

where erfc denotes th ]
(A7) ¢ complementary error function, erfo(y) = 1 — erf(y). See

Thus, I may also be written as

1 x
=1~ —
3 erfc (%2\/7:—1:) , (1.4.19)
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and (1.4.17) becomes

—_ g .._.,_i.._.. + .....x,__ —
wix, ) = f0+ g2(t) erfe (2«/1‘”_?) dt + g(0") erfc (Zﬁ) g{®).
(1.4.20)

Therefore, u(x, 1) = w(x, ) + g(t) is given by

u(x, 1) = fo 2(t) erfc (2\/’;1‘?) dt + g(0™) exfec (':iffz) (42D

Note that w(co, 1) = -g{t) as required. For the special case gty = d =
constant, § = 0, and we have u(x, 1) = d erfc(x /2+/1). Here, again, as for
(1.4.11), w(0*, 0%) is undefined. However, lim .or u(x, 1) = 0, in agreement

with (14.12b), and i v (x, 1) = d, in agreement with (1.4.120).
=0
Integrating the first term by parts in (1.4.21) gives the alternative form

x24T

~x24(t--T)

_x [ (e _ X [eez e
ulm. D = 2J:Fjo f-a T 27 fe CE
(1.4.22)

The solution (1.4.22) is derived in Appendix A.2 using Laplace transforms. See
(A.2.73). In Problem 1.4.4a this result is obtained as the solution of a related
integral equation. Problem 1.4.6 explores the application of the preceding ideas to
the case of discontinuous material properties. Problem 1.4.7 concerns the effect of
moving boundaries.

Next, we consider problems on the semi-infinite domain subject to the homo-
geneous boundary condition #, = 0 atx = 0 and see how Green’'s function may
also be used to solve the problem where u, is specified atx = 0.

1.4.4. Green's Function of the Second Kind

We can also use a Symmetry argument to solve

U — Uy = 8(x — £)5() (1.4.23a)
on0 < x < oo, with§ > 0 subject 10 the boundary condition
u,(0,) =0, >0, (1.4.23b)
and initial condition
u(x,07) =0. (1.4.23¢c)

Here again, we assume that as x —> 00, U remains equal to the value it has at
infinity initially.

‘We might interpret the solution of {1.4.23) as the temperature in 2 semi-infinite
rod in response to a unit source of heatat x = &,t = 0 for the case where the rod
is insulated (that is, there is no heat flow) at the left end.

In order to ensure that condition (1.4.23b) holds for all ¢ > 0 at the origin,
we need to introduce an image, Or reflected, source of unit positive strength at the
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mmage point x == —&. The situation corresponding to Figure 1.5 now has the tw

bell-shaped profiles above the x-axis and centered at the points x = =&. Theref :
the slope of the combined profile vanishes at x = @, since the contriblltions tc:) ::e’
from the source at x = & and x = —§ cancel out exactly forall 7 > 0. )

Thus, the solution of (1.4.23} is
G, E, )= Flx — &, 1)+ Flx + £, 1), {1.4.24)

where F is the fundamental solution defined by (1.2.20).
More generally, if the source is turned on at ¢ = t > 0, we have

’ 1
Ga(X, £, 1 — T) = o [~ K940 eV e
) zm[" ) g GHRYAD)  (] 4.25)

1.4.5 Homogeneous Boundary-Value Problems

As in Section 1.4.2 we can use superposition to express the solution of

By — Uy = p{x,1), 0<x, 0=<1, (1.4.26a)
u(x, 07) = 0, (1.4.26b)
ue(0,8) =0, r > 90, (1.4.26¢)
in the form
t Lol
u(x, 1) = fc dr fo [P, TYGalx, £, 1 ~ T)]dE. (1.4.27)

Also, we can accommeodate a nonzero initial condition
u(x, 0F) = f(x)
by adding to (1.4.27) the contribution
]
u(x, ) xfo F(E)Galx, &, nde. (1.4.28)

For the case f(£) = ¢ == constant, it is easi i
S = sily seen by changing the sign of th
second term in (1.4.10) that (1.4.28) reduces to u = ¢, as expectegd. sonne

1.4.6 Inhomogeneous Boundary Condition,
ux(0,1) = h(z)

To solve the problem

My — Uy, =0, 0€x <00, 0<t < 00, (1.4.29a)
u(x,0%) =0, (1.4.298)
uy(0,8) = h(t), t > 0, (1.4.29¢)

we introduce the homogenizing transformation

wix, 1) = ulx, t) — xh(t). .(1.4.30)
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It then follows that if u solves (1.4.29), w solves

W, ~ Wex = —Xh(t), (1.4.31a)
wix, 07) = —xh(0"), (1.4.31b)
we(0,7) = 0. {(1.4.31¢)

Using the results in (1.4.27) and (1.4.28), we have
t =2
u(x, 1) — xh(t) = “”f dr[ ER(T)Galx, &, t — T)dE
0 0

[«2]
— R(0") f £Ga(x, §, 1)dE. (1.4.32q)
0
This can be simplified to the form
H
u(x, ) = ~ L f h(z)( — Ty e F /4 T, (1.4.32b)
NEI

In Problém 1.4.8 you are asked to derive this result and to reconcile it with the
result obtained by Laplace transforms.

1.4.7 The General Linear Boundary-Value Problem

The general linear boundary-value problem over the semi-infinite domain is

uy = Ugx = plx, 1), (1.4.33a)
u(x, 0%y =0, (1.4.33b)
a(@u, 1) + b0, 1) = c@@), t >0, (1.4.33¢)

as we have the most general linear boundary condition (1.4.33¢) at the left end
with arbitrarily prescribed nonvanishing functions a, b, and ¢. In our previous
discussion, we have solved the two special cases a = 0 and b = 0. There is no
loss of generality in setting u(x, 0*) = 0 in (1.4.33b), since for a general initial
condition u(x, 0T) = f(x), we can transform the problem to the form (1.4.33)
by considering u — f as anew dependent variable.

A Green’s function approach is not feasible if @, b, and ¢ are all nonzero, and
we study two approaches next for solving (1.4.33).

(D au(0,?) + bu (0, 8) = (@), a and b constant

If a and b are constant, (1.4.33¢) may be interpreted as Newton’s law of cooling
for a semi-infinite heat conductor with its left end (x = 0) in contact with a heat
reservoir with prescribed time-dependent temperature. We write (1.4.33¢) in the
form

bu, (0, 1) = alur() — u0, N1, (1.4.34)

and regard —b as the thermal conductivity, a > 0 as the heat transfer coefficient,
and ug(t) = c(2)/a as the reservoir temperature. Thus, for example, if up(t) >
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u(0, 7), we expect heat to flow from the reservoir into the conductor, making the
}eft end x = 0 hotter than the interior, ie., u,(0, 1} < 0. This follows ?rom
(1.4.34), since b < 0 in this interpretation.

One approach for solving (1.4.33) is to introd i
o e ) oduce a new dependent variable
vix, t) = au(x, 1) + bu,(x, t). (1.4.35)
If we compute v; — vy, using (1.4.35) we obtain

U — VUre = @(Uy — Ugy) + blu, — vyy)y.

Thus, if « satisfies (1.4.33a), v satisfies

U Ve = ap(x, 1) + bpx(x, 1) = g (x, 1), (1.4.36a)

fhe same diffusion equation with a different, but known, right-hand side. Note that

ifa apd b depend on ¢, this approach does not lead to the same diﬁ'usion- equatior;

we p1c1$ up additional terms invelving time-dependent coefficients : ,
The initial and boundary conditions for v are obtained in the fox:xn

v(x,0) =0, (1.4.36b)

v(0, t) = c(2). (1.4.36¢)
Therefore, using (1.4.6) and (1.4.9), we have

x I
v(x, 1) = % [ r‘3/2c(: — r)g"f‘fz/‘h’dt
0

! o
+f{) er 4(51 t)Gl(xa S: - t)d§= (1'4'37)
where G is defined in (1.4.4).

Knowing v(x, ¢), we compute u(x,1) b i i 1
- : » 1), ) v solving the linear inh
ordinary differential equation (1.4.35). This gives progeReos

—~ax/b
u(x, 1) = ¢(r)e >t 4 &

[0 u(E, e dg, (1.4.38)

where ¢ (z) is as ){et unspecified. The initial condition «(x, 0) = 0 and the fact
that v(x, 0) == 0 imply that ¢ (0) = 0. It is easy to verify by direct substitution
that (1.4.38) s.aasﬁes the boundary condition (1.4.33¢) identically. To determine
@ (r) we substitute (1.4.38) into the governing equation (1.4.33a). We have

. ~ 1 x
uy = G)E 4 o eme j; v (&, Des/bdg, (1.4.39a)
a x
e s /b a - 1
Uy b¢(r)e axfb gz—e avr/bf U(Es I)eﬂ'.’:/bdg + ""U(x, I), (1_4_39b)
z 2 0 b
Upy = E_¢(t)e—ax/b o & et * ak/b a
b2 23 € A v(E, ne™7dE — 7 u(x, 1)

i
+ . (1.4.39¢)
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The integral in the expression defining ux, can be developed by integration by
parts twice to give

_ a_2_¢(z) —az/b __ a (0 ) —ax /b + l (0 I) ~ax (b
Uxy — b2 (4 'Eiv ,l)e bvx 5 4

X
+ %e“‘”‘f” f vex (&, 1) P dE. (1.4.394)
0

Substituting (1.4.39a) for u, and (1.4.394) for uy, into (1.4.33a) and using the
boundary condition (1.4.33¢) gives

2 X
plx, 1) = [é:(r) - %’5¢(f)] e+ -;;e““f” fo lap(E, 1) + bpx(§, D™/ dE

a 1
e - —axfb
+ [bz c() 7 v, (0, t)] e . (1.4.40)

Now, when we integrate by parts the integral of pe®/*, the integrals involving px
cancel. We also pick up a p(x, t) on the right-hand side of (1.4.40) that cancels the
p(x, 1) on the left-hand side. Finally, we multiply though by 2°*/% 1o obtain the fol-
lowing first-order linear inhomogeneous ordinary differential equation governing

o)
. a* a 1 A
o) — E;qb(r) = -~~g2—c(t) + p(0,1) + va(o, 1. (1.4.41)

Since v is given by (1.4.37), the right-hand side of (1.4.41) is a known function of
¢. The solution of (1.4.41) subject to ¢(0) = 0 defines ¢ (¢) uniguely. When this
result is used in (1.4.38), we have the solution of (1.4.33).

We work out the details next for the special case p(x, t) = 0, ¢ == constant.
Thus, according to (1.4.21) (with g(0), 2(0%) == ¢) we have

w(x, 1) = cerfc (E%) . (1.4.42)

Using the definition (A.2.77) of the complementary error function, we have

d 2 2
— erfl o e 1.4.43
% ¢ c(z) ﬁe ( )
Therefore, v, (0, 1} = —c/+/7t, and (1.4.41) reduces to
. at ac ¢
= — e 1.4.44
¢ b2 ¢ b2 b/mt ( )

The solution of (1.4.44) subject to ¢(0) = 01is

¢@) = i. {1 — g [1 + erf (“—1{5)“ . (1.4.45)
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Thus, u(x, r) is given by (1.4.38) in the form

e e ()]

c X
+ --e‘”/bf /% erfe (_____’g‘ ) d
| p A Wi £ (1.4.46)
This result can be further simplified by evaluating the integral on the right-hand

side. We outline the calculations next, alth
) ! , although the final result i
directly using Mathematica or Maple, We have ey be obtained

IOch;xeaE/bcrfc(fJ-«;)dg

b
N P NP U Lo £
a[e ec(Z\ff) ! \/J}?j;cxp(ugu—if)de]

Denoting
x 2
I Ef ex a8 &
0 p( b i R

we find, upon completing the square in the exponential, that

x — 2
I = e“if/bzf exp (S 2ar/b dE.
0 2./t

The above is a use:fu.l trick for integrals with quadratic exponents as in 7;. Now we
evaluate Iy by splitting the integral into two parts as in (1.4.18¢) to obtain

I = /mred e [erf (M + erf (x — 2at/b
b 2./t -

Therefore, using this result in the expression for I, gives

b
I = -~ {e"‘/berfc(——{— -1
a zﬁ

4 5P| arf 9_«_/_3_ x —2at/b
& I:e ( > )-{:-erf(-————_.mz‘/f )}}

Now we substitute this expression for Iy into (1.4.46) to obtain the solution

[ x 2
ux, ) = & erfc(m) o fd_ax x = 2at/b
a [ 2J{ cx?( b2 b )e.l'fc (—-——-—-—nm-zﬁ )}
(14.47)

It is a straightforward matter using Math i i
et o 2 ematica or Maple to verify that (1.4.47)
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(i) a()u(0, 1) + b(Du (0, 1) = ¢(t), a and b depend on t

As pointed out earlier, the transformation of dependent variable (1.4.35) is not
helpful in this case. Instead, we assume an unknown boundary value for u at

x =0,
w(@, ) = k@), t >0, (1.4.48)

where k(¢) is as yet unspecified. The solution of the problem consisting of (1 4.33a),

(1.4.33b), and (1.4.48) was worked out in (1.4.21). We have

= [ x *yerfe | 2
uix, t)-j; k(r)erfc(zm)dt + k(0 )eﬁc(zﬁ). (1.4.49)

‘We now compute

1 kD) s kOY) 2

U (X, 1) = — ==z e @ dz — Paaad 1.4.50
where we have used (1.4.43) to calculate the derivative of the complementary exror
function. Evaluating (1.4.50) at x = 0 and using the result together with (1.4.48)
in the boundary condition (1.4.33¢) gives the following integral equation for k(r):

I ], e
) = ak@) - 22 [ KE) gy — f‘%l] (1.451)

= AT
ﬁ 0 ~E—T

In the first term on the right-hand side of (1.4.50), note the occurrence of the
integrable singulaxity proportional to (¢ — )= at T = t. Had we used the
form (1.4.22) for the solution u, the corresponding singularity would have been
proportional to x2(t — t)"°/?, requiring further manipulations 10 derive a well-
behaved result at x = 0.

A discussion of techniques for solving the integral equation (1.4.51) is beyond
our scope. Once k(t) has been determined, the solution for u(x, ) is given by
{1.4.49).

Problems

1.4.1. Verify by direct substitution that (1.4.6) solves (1.4.5), and that (1.49)
solves (1.4.7).

1.4.2. Verify by direct substitution that (1.4.22) solves (1.4.12).

1.4.3. Consider the linear equation

u—ug, =0, 0=5x, 0514 (1.4.52a)
with initial condition
u(x, 0y =0, (1.4.52b)
and the following boundary condition atx = 0:
u(@, ) = Ct", t >0, (1.4.52¢)
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where 7 is a2 nonnegative constant and C is a positive constant.
As usual, (1.4.52b) implies the boundary condition at infinjty

u(co, 1) =0, r >0, (1.4.52d)
a. Use the result (1.4.22) 1o express the solution in the form

u(x, 1) = Ct" f(9), (1.4.53)

where

9= %
= 35E (1.4.54a)
and
2 [ A
8) = — - - =

f@&n T fﬂ (1 52) e~ ds. (1.4.54b)

b. Show Ehat tpe simi}arity form (1.4.53) satisfies (1.4.52), and derive the
following differential equation and boundary conditions for £(8):

F+26f —dnf =0, (1.4.55a)
F) =1, (1.4.55b)
fleo) = 0. (1.4.55¢)

Show that the solution of (1.4.55) gives (1.4.54b).
¢. Now consider the nonlinear diffusion equation

u ~ RG], =0, 0<x, 0<1, (1.4.56)

where ]_c(?) is a prescribed function of u.
The initial condition is (1.4.52b), and the boundary condition at x =

o< is (1.4.52d), whereas at x = O we have
u(0,1) = g@®), >0, (1.4.57)

f_or some prescrilied function g(¢). This problem is discussed in [6].
i. If k(u) = Au”, where A and v are positive constants, show that the
most general g(z) for which a similarity solution exists is

g = Cr", (1.4.58)

where C and # ar i : P
form is ¢ constants as in (1.4.52¢). In this case, the similarity

gt - X
ulx,t) = t"¢(r), ¢ = AT (1.4.59)
and ¢ obeys
A __fd___ u 9’2 v+ 1 d¢

dt dt iy e =0 (1.4.60a)

subject to the boundary conditions

¢0) = C, ¢oo) = 0. (1.4.605)
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ii. If k(u) is prescribed arbitrarily, show that the most general g(2) fcln‘
which a similarity solution exists is g() = C = constant. In this
case the similarity form is

x
w(x, 1) =¢@®), 6= 73, (1.4.61)
and ¢ obeys
d do 8 do
- — - — =10, (1.4.62a)
d6 [k(q&) do :| + 2 da
with boundary conditions
$(0) = C, ¢(o0) =0. (1.4.62b)

1.4.4a. Assume that the solution of (1.4.12) on the positive axis may be regarded

as the response due to a source of unknown strength g () at. the origin
for an infinite conductor. Therefore, u(x, t) may be expressed in the form
(1.3.7) with p = §(x)g(¢). In this case, (1.3.7) reduces to

e—x’-/4(:—-r)

¢

ulx, ) = —2%/_; ./o g(1) —u-Jr...:...—--—Tdr.

But in order to satisfy the boundary condition (1.4.12¢), we must have
1 fg(e)dT

SO=357% h Vime

This is an integral equation (solved by Abel) for the unknown ¢ (t) in terms

of the known g(z). o
Use Laplace transforms and the convolution integral to show that

2 d ' g(z)dr
i0=—=5 ) =z

Therefore, the solution of (1.4.12) may also be expressed in the form

1 ] em BT g T o(s)ds
u(x, ) = -J-_r-fo [ drt. (1.4.66)

(1.4.63)

(1.4.64)

(1.4.65)

At — T E; 0 ~t =S
Show that (1.4.66) reduces to (1.4.22).

. For the case g(z) = 1, we have shown that (1.4.66) reduces to u(x, t) =

erfe(x/2¢1/2). Suppose that we wish to regard this solution in 0 < x <00,
0 < 1 < oo as being produced by an unknown initial specification of u
of the form
0 ifx » 0,
u(x, 0) = [ Flx) ifx <0,
for the same diffusion equation (1.4.12a) over the inﬁ:_lite interval -0 <
x < co. With F(x) = f(—x) show that f obeys the integral equation

.[ " F@e s = 2mt (1.4.68)
¢

(1.4.67)

1.4.5a,

1.4.6a,
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Use Laplace transforms to show that f(£) = 2.
Modify the calculations leading to (1.4.22) so that you obtain the solution
of (1.4.12) with (1.4.12b) replaced by the arbitrary initial condition

u(x, 0) = f(x). (1.4.69)

Specialize the results in (2} to the case f = constant = u;, and express
the solution in a form such that u, (0", ¢) is free of singularities. (Notze:
(1.4.22) has an apparent singularity atx = 0, whereas (1.4.21) does not.)
Consider two semi-infinite rods with initial temperatures i == u; = con-
stant and ¥ = up = constant, thermal diffusivities (see (1.1.9)) ? =
constant and k2 = constant, and thermal conductivities &, = constant and
ky == constant. Suddenly, at ¢ = 0, the two conductors are brought into
perfect contact at x = 0. Let the first conductor ieon 0 < x < oo and
let the second conductor lie on —o0 < x < 0.

It follows from the integral conservation law (1.1.6) with A = con-
stant that the interface conditions for ¢ > 0 are u(0*, #) = u(0~, ) and
ki (07, £) = kau, (0, 1). Show this. Use the result in Problem 1.4.5b to

show that the heat flow kyu,. (07, £) (or kyu, (0, 7)) at the point of contact
and ¢ > Qis given by

I &
F(t) = mzm = (g =~ ¢), 1.4.70
) N Kl( 1= ¢€) ( )
where ¢ is the constant temperature at x = 0:
- k
c= 2N, o 1.4.71)
]l ~a k2K1

. Now consider the situation where these two rods are initially at zero tem-

perature and in perfect thermal contact. Use the method of images to
calculate the fundamental solution; that is, solve

U — KU = 8(0)S(x — §), 0 < &, (1.4.72)

on —¢ < x < oo with u(x,07) = 0, where x = x; if x > 0 and
& == k3 if x < 0. Use the interface conditions u(07, 1) = » (0™, 1) and
kyu (0%, 1) == kpu, (0, £). Hint. Assume that in the domain x < 0, the
solution #z(x, ) may be regarded as the response to a source of unknown
strength B and unknown location (§; > 0) in an infinite medium with
the uniform properties «z, ky throughout. Thus, ua(x, 1) corresponds to a
“transmitted” temperature due to the primary source atx == & and ¢ == 0.
For the solution u;(x, 7) in the domain x > 0, assume that in addition to
the response due to the primary source, there is a “reflected” contribution,
which may be regarded as the response to an image source of unknown
strength A Jocated at the unknown pointx == & < 01in aninfinite rod with
properties k; and «; throughout. Use the interface conditions to determine
A, B, &, and &. Verify that in the limits (kp/k;) — 1 and («2/x1)} — 1,
A->0O0and B — 1.
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1.4.7. Consider the diffusion equation
U — Uz =0, 051 <00, (1.4.73)

on the time-dependent domain at < x < co, where g is a constant. We
wish to solve the initial- and boundary-value problem haying

u(x,07) = 0, (1.4.74)
ulat, 1) = g(t), (1.4.75)

for: > 0 and a prescribed g(r). Thus, u is prescribed as a function of time
on the left boundary that moves at a constant speed a.
a. Introduce the transformation of variables ¥ = x — ar, = ¢ and solve
the resulting problem by Laplace transforms.
b. Calculate the appropriate Green’s function for the problem in x, ¢
variables and rederive the solution using this.
1.4.8. Use the expression (1.4.25) for G, to simplify the solution in (1.4.32a)

to the form given by (1.4.32b). Rederive the same result using Laplace

transforms.

1.5 Problems in the Finite Domain; Green’s Functions

The next step in our development involves problems on the finite domain, which
may be taken as the unit interval 0 < x < 1 with no loss of generality (that is, we
choose the length L of the domain as the scale to normalize (1.1.9)). As in Section
1.4, we distinguish problems that have © = 0 or u; = 0 at either end. Thus, we
need to stady four different Green’s functions, and we start with the simplest case.

1.5.1 Green’s Function of the First Kind

We refer to the solution satisfying the boundary condition x = 0 at both ends as
Green’s function of the first kind, G . More precisely, define the solution of

Uy = U =8(x — 5V —17), 05x =1, 751, (1.5.1a)
ufx, t7) = 0, (1.5.1b)
w0, =u(l,t) =0, t>r1, (1.5.1¢)

as Green’s function G (x, &, ¢ ~ 7). Here, £ and t are constants with0 < § < 1,
0 <.

Let us construct G using symmetry arguments in terms of appropriate funda-
mental solutions. Consider the “primary” source 8(x — £)3{z —~ 7) sketched as 1
atthe pointx = £,0 < & < 1, on the unit interval in Figure 1.7.

In order to cancel the contribution of the primary source at the left boundary
x = 0, we need to introduce a reflected (or image) source of negative unit strength
(sketched as }) at the image point x = —&. This image source must also be turned
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I S T

1 -2+ 1 £ g
FiGURE 1.7. Primary and reflected sources to give = Qatx = Qand x = 1

onatt = t. Similarly, to take care of the boundary contribution of the primary
source at x = 2, we introduce another image source at x == 2 — £, also turned on
at? = 7. But now, the image source at x = —£ contributes to the boundary value
atx = 1, and the image source at x = 2 — & contributes to the boundary value
atx = 0. To take care of the first, we introduce the 4 unit source at x = 2 -+ §.
To take care of the second, we introduce the 4 unit source at —2 + £, and s0 on.
The pattern that emerges has positive unit sources atx = 2n +£,n = 0, =1, 42,
- .-, and negative unit sources are at x = 2n — £, 1 = 0, =1, =2, . ... The sum

of all these source contributions is a representation for Green’s function G, in the
following series form:

o0
Gy, §,1=0) = 3 {Flx~Q@n+§), 1—7]—Flx~@n—§), t~7l}, (1.52)
n=—eQ
where F is defined in (1.2.20).
Green'’s function G, has the interesting symmetry property

Gi(x, &t —17) =G, x,t — 7). (1.5.3)

The corresponding steady-state result is noted in Appendix A.1.3. To demonstrate

this symmetry property, we note that the right-hand side of (1.5.3) is by definition
given by

o0
G, x,t—7) = Y [FE—2n—~x,1—1)— F(E—2n+x,1~1)]. (1.5.4)
n=-900
Since F is an even function of its first argument, we can rewrite the first term in
the summation as F{—£ + 2n + x, t ~ 7). Furthermore, since the summation
ranges over —o0 < n < o<, the infinite sum of these terms remains the same if
we replace n by —n. Therefore, we may write

o0
G, x.t—7) = 3 [F(~§=2n+x,t—7)— F(E~21+x,1—1)], (1.5.5)
RE=—0Q
which is just G (x, &, ¢ — 7).
- In terms of heat conduction, the result (1.5.3) is intuitively obvious and phys-
ically consistent. Suppose we consider a conductor with uniform properties and
with its two endpoints maintained at the same temperature, here normalized to be

X
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zero. Fix any two distinct locations x and £ on the conductor and carry out the
following two experiments. In the first experiment we turn on a unit source of heat
at time t at the point & and measure the temperature at the point x and timet > .
This gives the result G1(x, &, t — 1) for the measured temperature. In the second
experiment, we reverse the locations of the source and observer withoyt changing
the values of T or ¢ and find that the temperature at §, given by G1(§, x, f — 1), is
the same as that measured in the first experiment.

Using G, and superposition, we can now solve the inhomogeneous problem
{see (1.4.5))

U = Uxx zp(x, t)! Osx ﬁ 11 0513 (1.5.6@)

with zero initial condition

w(x,07) =10 (1.5.6b)
and zero boundary conditions at both ends,
w0, ) =u(l,) =0 for t >0, (1.5.6¢)
in the form
r 1
u(x, 1) = fo dr f [P, TG (x, &, 1 — D)) (1.5.7)
0

Similarly, as in (1.4.7)~(1.4.8), we solve the problem with p(x, 1) = 0 and
nonzero initial condition

u(x, 0%) = f(x), (1.5.8)
instead of (1.5.6b), in the form

i
u(x, 1) = [o FEG(x, £ 1E. (1.5.9)

Green’s functions for the remaining three homogeneous boundary-value
problems are listed in Problem 1.5.2.

1.5.2 Connection with Separation of Variables

You may be wondering how the result in (1.5.9) is related to the solution we

obtain by the more conventional separation of variables approach that is usually

discussed in a first course in partial differential equations. We explore this question

next. (Problem 1.5.6 gives a review of the basic ideas of separation of variables.)
To solve

Uy — gy = 0, (1.5.10a)
ulx, 07) = F(x), (1.5.10B)
w0, = u(l,£) =0, ¢ >0, (1.5.10¢)
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we assume that 1 can be expressed in the “separated” form:

uix, 1) = Xx)T(1). (1.5.11)
Substituting (1.5.11) into (1.5.102) gives
i T X
XT - X"T =0, = =
or 7 < (1.5.12)
where the dot indicates d/dr and the double prime indicates d%/dx*. The second
part of (1.5.12) can hold only if it equals a constant, and we quickly convince
ourselves that this constant must be negative, say —A%. (Why?)
So, we obtain the eigenvalue problem

X"4+22X =0, X0 =X =0, (1.5.13)
associated with (1.5.10). The solution is the eigenfunction
X, = b, sinA,x, A, = nm,

where by, is arbitrary and r is an integer. Thus, the solution of (1.5.10) in a series
of eigenfunctions is just the Fourier sine series

u(x, 1) = »_ By(t) sinnwx. (1.5.14)
n=1

Substituting (1.5.14) into {1.5.10a), or using T, +k§T,, = Q,gives B, = c,,e‘"z”z’ ,
where ¢, = constant.

To determine the c,,, we impose the initial condition (1.5.10b) and make use of
orthogonality to obtain

pl
o = 2/0 F(&) sin nk dt. (1.5.15)

Thus, the solution of {1.5.10) may be written in series form as

e 1
uGr, 0y =3 [2 f f(&) sinnxk d§:| €™ sin nox.
0

nw=l

If we interchange summation and integration (a step that is nearly never questioned
in a course in applied mathematics!), we obtain

1
u(x, 1) =f0 FEYH(x, §, t)dE, (1.5.16a)

where

o
H(x, & 1) =2y (sinnrg)e™ " sinnmx. (1.5.165)

r=1
Comparing (1.5.16) with (1.5.9) shows that these two results do not look alike.
In fact, in order for the two results to agree, we must be able to show that G, = H.
This is indeed the case, and is a consequence of a certain identity for the theta
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function. For example, see page 75 of {12]. It is instructive to work out this identity
in detail next.
We may use trigonometric identities to rewrite H in the form

~

o0 1 o0
Hix,§,1) = % Z e~ cosnr(x — &) — 3 Z e cos nm(x + £).

=00 e ebe o)
(1.5.17)
Now, the expression for G in (1.5.2) agrees with (1.5.17) if we can show that
= 1 & ~wnimls
S Fx+E-2m0=2 Y " cosnr(x+§)  (1.5.184)
no=—0o0 2 n=w=0Q
and
i Flx —&—2n,1) = 1 i e~ cos nar(x — ) (1.5.18b)
o — 00 ’ B 2 A= - o

These two conditions are equivalent and reduce to the simple condition

o0 o
w} Z e~ T=mtin — E TN cos 2nmz, (1.5.19)
77 n——0Q n=—00

if we write (x -+ §) or (x — &) as 2z, set n = mt, and use the expression (1.2:20)
defining F.
Denote /7 times the expression on the left-hand side of (1.5.19) by ¢; that is,

¢,z = Y eTE (1.5.20)

n=-—00

Clearly, ¢ is an even function of z (that is, ¢(n, ~2z) = ¢(n, 2))- Also, it is
periodic in z with unit period: ¢ (o7, z + 1) = ¢ {7, 2)- Therefore, we may expand
¢ in a Fourier cosine series:

e

¢(m2) = Z: a, (1) cos 2rvz, (1.5.21a)

V=00
where
1 o N
,(n) = f Z e™* = oos 2m v d. (1.5.21b)
0 =030

Interchanging integration and summation in (1.5.21b) gives

e 1
au(n) = Z fo "8~ eos 2m g di. (1.5.22)

n=w0QQ

Now change the integration variable and let s == n - { to obtain

=] n
a, () = Z f =™ cos 2 vsds
n—1

A=—-00
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o
= f e~ cos 2wvs ds = ﬁe“”"zﬂ_ (1.5.23)
—00
Thus, we have proven the identity
& ¥ > 2
D eTe = N e cos 2enz, (1.5.24)
n=—00 R=—00

which is (1.5.19) when we divide by /7.

In conclusion, the series representation for G converges to the same result as
the series for M, even though these series do not agree term by term. This latter
observation means that if we truncate the series for G|, the resulting approximation
will be valid in a different sense than the approximation cbtained by truncating
the Fourier series H. Let us pursue this idea further, as it will provide a useful
characterization of the two approaches we have used.

Consider first what happens if we truncate the serles (1.5.2) at » = N for
G 1. Clearly, we are neglecting all the heat sources located at distances greater than
2N + & on the positive axis and greater than 2N — & on the negative axis. For short
times, the response due to these sources is very small over the unit interval (because
we are ignoring only the weak exponential tails of the corresponding F functions).
Thus, the Green’s function representation (1.5.9), when G, is truncated for some
n = N, should be valid for short times. In particular, the boundary conditions at
x = Oand x == 1 are only approximately satisfied with the truncated series, and
this approximation deteriorates as ¢ gets large. On the other hand, if we truncate the
Fourier series representation (1.3.16), the boundary conditions are exactly satisfied
for all times, but the initial condition will be described only approximately. Thus,
the truncated series (1.5.16) should provide a good approximation for t large.
A more careful analysis of the convergence properties of the G, and H series
confirms the above intuitive conclusions.

‘We reiterate that both expressions converge to the same solution if the infinite
series are summed. We shall see in Chapter 3 in examples for the wave equation
that this property of Green’s functions versus eigenfunction expansions is also true
there. It is a useful result, as we are able to have an approximation involving a finite
number of terms for both ¢ small and ¢ Jarge.

1.5.3 Connection with Solution by Laplace Transforms

A third approach for solving the problem in (1.5.10) is to use Laplace transforms
withrespect to z. For simplicity, consider the special case f = 1.Using the notation
U(x, s} for the Laplace transform of u(x, t) (see Section A.2.6), we obtain

e = sU = =1, U@,s5) =U{,s) = 0.
The solution is easily obtained in the form

Ulx, s) = e 4 (& — 1) — (& — eV

1 S5
s(eﬁ _ e‘ﬁ) le
(1.5.25)
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The solution for u«(x, ¢) is then given by the inversion integral (A.2.41b); that

is,
1 O* +ioo -
u(x,t) = — e U(x, s)ds. (1.5.26)
2mi Ot —isa
Note the branch points at s == 0 and s = oo. Since we must choose the branch of
/5 that is positive when s is along the positive real axis, it is convenient to cut the
s-plane along the negative real axis; hence ¢ = 0% for the vertical contour.

The expression (1.5.26) cannot be evaluated in terms of a finite number of ele-
mentary functions. One standard approximation for a Laplace transform inversion
is the “large 5™ approximation, which consists of expanding (1.5.23) in series form
for s large and then integrating the result, term by term, in (1.5.26). As discussed
in texts on complex variables (for example, see page 279 of [8]), this gives an
approximation for u(x, r) valid for r small.

To see this, just change the variables in (1.5.26), setting s = ¢/ and consider
the limit |s| = o0, lo| fixed. Clearly, this implies that we need to take ¢ — 0, and
in effect, the substitution /¢ for 5 in U (x, 5) accomplishes this.

If we expand the denominator of (1.5.25) and take the product of this series with
the numerator, we find that U equals the particular solution 1/s plus four series in
the form

Ux, s) _1,1 [e““‘/m""’ A R T L I ]
A A

[e— Bx o o=wS@kR) o SR ]

G b |

[e—ﬁu—n o @ VSG=E)  mEEex) L ]
+ }_ [e—ﬁ(i-t-x) + e—ﬁ(3+x) e e—ﬁ(5+x) b ] .
s
These series can be rearranged in the form
Ulx,s) = ! + ! i(ml)"e*ﬁ@’“" 21 i(—l)"e“ﬁ("“). (1.5.27)
’ R s =
Using (1.5.26) or tables of Laplace transforms, we find that the tansform of

F) = erfc ( (1.5.28a)

7).
withz > Oand A real, is
F(s) = % e, (1.5.28h)

Therefore, the termwise inversion of (1.5.27) gives the series

) Z(ml)"erf( J‘) (1.5.29)

n=0

u(x, :)MI+Z( 1" erfc(
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It is left as an exercise (Problem 1.5.4) to show that this series is the same as
the one resulting from the Green’s function representation (1.5.9) when we take
S = 1and integrate the series for G, term by term. This gives a confirmation of
our earlier intuitive argument that the truncated Green’s function representation of
the solution is valid for r small.

At any rate, the exact expressions (1.5.9), (1.5.16a) with f = 1, and (1.5.26)
define the same function u(x, ). The advantage of (1.5.9) and (1.5.16a) over
(1.5.26) is that these are in terms of real quadratures, whereas (1.5.26) is a complex
integral. Another example of the use of Laplace wansforms to calculate the solution
of the diffusion equation in a bounded domain is given in Problem 1.5.5.

1.5.4 Uniqueness of Solutions

In this section we show that solutions of the initial- and boundary-value problem
for the diffusion equation are unique. We consider solutions of

Uy — ey =0, 0=x =<1, 0=<1t < oo, (1.5.30a)
with initial condition

ulx, 0" = f(x), (1.5.308)

and one of the folowing four boundary conditions:
u(0,1) = g(t), u(l, 1) = h@), (1.5.31a)
u(0, 1) = g(t), u (L, ) = k(2), (1.5.318)
ux(0,2) = g(®), u(l, ) = k), (1.5.31¢)
ur(0,2) = g(t), u.(1,t) = h@). (1.5.31d)

Here g and £ are arbitrarily prescribed in each case.
In preparation for this proof, we first derive an integral identity for solutions of

(1.5.302). Multiply (1.5.30a) by u(x, t) and integrate the result with respect to x
on the unit interval to obtain

1 1
j wp,dx = / Uy, dx.
0 0

Since the interval is 1ndependent of ¢, we may write the left-hand side of this
expression as (d/dt) f {u*/2)dx, and integrating the right-hand side by parts, we
obtain

1d ', l
5T | u {x, )dx = uu,

1
- f u2(x, 1)dx. (1.5.32)
¢

0
The identity (1.5.32) is true for any solution of (1.5.30a). Suppose that i, and

1 are two solutions of (1.5.30a), each of which satisfies the initial condition
(1.5.30b) and one of the four pairs of boundary conditions (1.5.31). If we denote
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the difference by u; — uz = v(x, 1), then v(x, r) satisfies the problem
Uy — U == Gy
vix,0) =0,
v, =0 atx=0 and x =1

Therefore, the identity (1.5.32) for v becomes

l d 11.12(1' t)dx = mfl v3(x, )dx < 0
2 dt 0 ’ . 0 N -
Or if we let
1
I@) = 1 f v?(x, 1)dx > 0
2 Jo
and
1
G@) = ﬂf vi(x,)dx <0,
0
we have
daf ] t
o= G(), thatis, I()—I0) = G(r)dr < 0. (1.5.33)
0

Thus, [ (£) — I (0) < 0.But1{0) = O;hence, I(¢) < 0.Accordingtoits definition,
I(t) = 0. So, we must have I(z) = 0, and the integral of a nonnegative quantity,
such as v?, can vanish only if v(x, #) = 0. Thus, we have proven that i, (x, 2) =

uax, 1).

1.5.5 Inhomogeneous Boundary Conditions

As discussed in Section 1.4, we can transform a homogeneous equation with
inhomogeneous boundary conditions to an inhomogeneous equation with homo-
geneous boundary conditions. To illustrate the idea, consider (1.5.30a) with initial
condition (1.5.30b) and boundary conditions (1.3.31a).

To homogenize the boundary conditions, assume a transformation of dependent
variable ¥ > w in the following form that is linear in x,

ulx, 1) = wix, 1) + a@)x + (1), (1.5.34)

with as yet unspecified functions & and 8 of the time, to be chosen such.that the
boundary conditions for the resulting problem for w are homogeneous.
Using (1.5.34), we compute

u, = w, +ax + B,
Iy = Wy + &, Ugzx = Wex.
Therefore,

Uy — gy = Wy + QX + f = Wy, =0,
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that is, w obeys the inhomogeneous problem
Wy — Wye = —Gx — B.

- In orderto have w(0, 1) = 0, we find from (1.5.34) that we mustset (1) = g(2).
Similarly, in order to have w(l, t) = 0, we must set () = A(z) — g(2). Thus,
the ransformation relation is

u(x, 1) = wx, 1) + x[a@) — g + (@), (1.5.35)

and w obeys the inhomogeneous equation

. W = Wee = [§(0) — ROx — §(1) = plx, ©) (1.5.36a)
subject to the initial condition
w(x, 0) = f(x) — x[2(07) — g(OM)] ~ g(0") = g(x) (1.5.36b)
and homogeneous boundary conditions
w(@, 1) = w(l, ) =0 (1.5.36¢)

The solution of the problem (1.5.36) is just the sum of the solutions (1.5.7) and
(1.5.9) with f = q; that is,

e 1 1
wix, 1) = fo dv jo P& G (x, £, 1 — T)dE + f 2@)G(x, £, dE.
4]

' (1.5.37)
Havmf_,g found w(x, r), we obtain u(x, r) from (1.5.35). Note that the form
(1.5.36) is also appropriate for a solution using Fourier series, as homogeneous

boundary conditions are also crucial in being able to superpose eigensolutions.
Problem 1.5.7 concemns the solution for the case (1.5.31b).

Problems

1.5.12. Show that Green’s function for the following genmeral homogeneous
boundary-value problem for the steady-state diffusion equation

i = 8(x—&); 0sx<1, 0<§<1, (1538)

u(0) + aou’(0) = 0; ay = constant, (1.5.3%9a)
u(l) + a;u’(1) = 0; a, = constant, (1.5.395)
is given by
Q—Edar)ix—ap) . x < &
Gx, &) = [ (oiyaicgy ' (1.5.40)
e oo

Give a physical reason why G becomes infinite if gy — a; = 1.
b. Give a physical reason why Green’s function for (1.5.38) with the
homogeneous boundary conditions 2/(0) = /(1) = 0 does not exist.
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1.5.2. Use symmetry arguments to show that Green’s function for the diffusion
equation

My = Ugy = 8 ~ T8 (x — £) (1.5.41)
with zero initial condition and each of the following three types of

homogeneous boundary conditions is given in the specified form.
a. u(0,1) = u,(1,1) = Ohas

Galx. 6,1 =)= Y (~I'(Flx — @n+§),t—1]

=00

— Flx - n = £), 1 — 11} (1.5.42a)
b. u (0, ) = u(l, 1) = Ohas

Gix, &1~ 1) = Y (=1)'{Flx -~ @n+§),1—7]

n=—00

+ Flx — (2n — &), t — t]}. {1.5.42b)
c. u(0,1) = u,(1,t) = Ohas

Galx, &1~ 1) = Y {Flx~@n+&),1-71]

n=—00

+ Flx — @n—&),1 —1]}. (1.5.42¢)

‘What symmetry properties, if any, can you uncover for G;, Gs, and
Goifx — £, & — x?
d. Use the results of parts {a)-(c) to solve the general initial’boundary
value problem for

Uy — Uy, = plx,t), (1.5.43a)
ulx, 0) = f{x), (1.5.438)

and each of the following pairs of boundary conditions for z > © after
introducing an appropriate homogenizing transformation as in Section

1.5.5
u(0,1) = g1(1); u 1, 1) = g2(2), (1.5.44a)
we(0,2) == Ay (t); u(l,1) = ha(1), (1.5.445)
w(0,1) = A1 (1); w, (1, ) = ga(2). (1.5.44¢)

1.5.3. Evaluate (1.5.7) for the special case where p = §(x — {), where £ is a
fixed constant on 0 < ¢ < 1. Show that as t — o0, your result reduces
to Green’s function for the steady-state problem derived in Appendix A.1
(see (A-1.40)).

1.5.4. Evaluate (1.5.9) for f = 1 and show that the resulting series is the same
as (1.5.29).
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1.5.5a. Show that the Laplace transform [ (x, 5) of the solution of

W —ure=0; 0<x<1; 0=, (1.5.45q)
u,0) =1; u(l,1) =0, (1.5.458)
ul(x,0) =0, (1.5.45¢)
is
* Ulx,s) = 1 M (1.5.46)
s sinh /¥
b. Rewrite (1.5.46) in the form
Ux,s) = ;1- . a—:—é_-i-f-s—)-(e“ﬁ* — V520 (1.5.47)
and expand the factor
1 oo
T = :;6 Pl (1.5.48)
for large s to obtain the series
UGx,s) = = i(e“ﬁa’”"’) — g VSn-n)y (1.5.49)
" 5.

n=0

Now use (1.5.28) to show that the solution u(x, 1) has the series form

i 2n +x n+2—x
Z erfc Wi erfc 2T . (1.5.50)

n=Q

¢. Calculate the solution of (1.5.45) using Green’s function and superposition
after homogenizing the boundary condition atx = 0. Show that this result
agrees with (1.5.50).
1.5.6. This is a review problem to illustrate separation of variables and Fourier
series. Consider

r—Uge =x5inz, 02x<1, 0<g, (1.551a)
u(x, 0) = x(1 — xJ, (1.5.51p)
v,y =u, (1, =0 ifr>0Q. (1.5.51¢)

a. Look for a solution of the homogeneous equation (1.5.51a) in the sep-
arated form u(x, 1) = X ()T (2), and show that X is given by any one
of the eigenfunctions :

Xn(x) = o 8in Ayx, (1.5.52)

where the eigenvalues are A, = (2n + Drj2forn =0,1,2,...and
o, = constant.
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b. Based on this result assume a solution of (1.5.51) in the form of a series
of eigenfunctions:

u(x, 1) = i AL (1) sin Ayx, (1.5.53)
=0

where the A,(r) are functions of ¢ to be specified. Alsp, expand the
right-hand side of (1.5.51a) in a series of the eigenfunctions X,

[« =]
xsint = (Z b, sin A,,x) sin 7. (1.5.54)
n=0

Use orthogonality to show that b, = 8(—1)"/7?(2n + 1?2. _
Now substitute (1.5.52) into (1.5.51a) with (1.5.54) for its right-hand
side to show that the A, (1) satisfy
dA,
dt
¢. Solve (1.5.55) to obtain

+ 224, = bysint. (1.5.55)

b . -—J\.2t
= -3 % 2gint —cost + e~M). (1.5.56)
An(z) - An(o)e + A‘z + 1 ( n

d. Use (1.5.53) with A,(#) given by (1.5.56) in the initial condition
(1.5.51b) to obtain
32 — 8w (—1)"(2n + 1)

= 1.5.57
4 0) = w3(2n + 1)3 ( )
1.5.7. Solve
W — g = plx, 1), 0<x<1, 0=, (1.5.582)
ulx, 07y = f(x), (1.5.58b)
u(0,1) = g(t), u(1,1) = k), (1.5.58¢)

using Green’s function as well as separation of variables after having
transformed to a homogeneous boundary-value problem.

1.6 Higher-Dimensional Problems

The diffusion equation in two or more space dimensions is given by the following
dimensioniess form of (1.1.18):

u — Au = p, (1.6.1)

where A is the Laplace operator and p is a prescribed function of the sp:fmal vari-
ables and the time. For certain domains where one or more of the coof‘dlnates‘ are
bounded, solutions may be calculated using separation of variables. This technique
may also be combined with Fourier transforms with respect to one or more CoOoT~
dinates that have an unbounded range. An example is outlined in Problem 1.6.4b.
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For a complete discussion of separation of variables see [22]. Another approach
for solving (1.6.1) is to take its Laplace transform with respect to ¢. The result 1s
a Helmholtz equation for the transformed variable, and this equation is discussed
in Chapter 2. See Section 2.3.2 and Problems 2.3.4, 2.6.1, and 2.6.2. Here we will

only consider solutions using Green’s functions, and we begin our discussion with
a derivation of the fundamental solution.

1.6.1 The Fundamental Solution

Consider the n-dimensional diffusion equation with a unit source turned on at the
origin at time ¢ = 0: ‘

2. 8%y
e — ;1 o = S8 - . . 5(x,), (1.6.2)

where n is a positive integer. As in (1.2.6)—(1.2.7), we have the zero initial condition

w(xy, ..., %, 07) = 0, (1.6.3)

and require u to vanish at infinity:

u(xy, ..., up, ) >0 as r= xlz+x§+-..+x,%-—>oo. (1.6.4)

In view of the fact that the source term on the right-hand side of (1.6.2) produces
a spherically symmetric solution, we need only consider the spherically symmetric
Laplacian, and (1.6.2) has the form

(n—1)

r

By — Upp —

wy = §(t)0, (). {1.6.5)
We have used the notation 8, (r) to denote the n-dimensional delta function
8 (r) = 8(x1)8(x2) - . . 8(xx). (1.6.6)

Consider the volume integral in terms of the Cartesian coordinates Xty-- Xy Of
the n-dimensional delta function over some domain D in this n-dimensional space.
By simply applying the properties of the one-dimensional delta function to each of
the » integrals defining the volume integral, we have the following generalization
of the definition for the one-dimensional case

1 if the originis in D

o} 8(x)E L B(xp)dxdas . L dx, = . ’
[ [oeosen . spandz...ax {g e o

D

(1.6.7)
Forn > 2, we may also write (1.6.7) in terms of the n-dimensional delta function
8:(r) and the appropriate volume element 4V

1 ifr =0QisinD

- | S(NdV = . ’ 1.6.8

./ f %) [0 otherwise. ( )
o)
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For example, if n = 2 and D is the interior of a circle of radius ¢ centered at
the origin, then 4V = r dr d@, and we have

¢ In €
f f S,(r)r dé dr = 2x f ré(ridr =1, (1.6.9a)
r=0 J8=0 0

where r and § are polar coordinates in the plane: x = rcosf,y = r siné. If
n = 3 and D is the interior of a sphere of radius ¢ centered at the origin, the
corresponding result is

£ 2 ¥4 €
f f 530y sin ¢ d df dr = 4 f rP(ydr =1, (1.6.95)
=0 J@=0 Jp=0 0

where 7, 9, and ¢ are the spherical polar coordinates: x = r sin ¢ cos g,y =
rsin ¢ siné, z = r sin ¢. More generally, for an n-dimensional sphere of radius
¢ centered at the origin, (1.6.8) reduces to

@n f P18, (r)dr = 1, (1.6.9¢)
r=0

where w, is the “area” of the n-dimensional uniz sphere.
To calculate w, consider the following identity:

[2.]
o0
f f e~ ST Ay dxy . dxy = f e~ e, dr, (1.6.10)
G
-t

n
where r? = x? +. . .+x2. The left-hand side of (1.6.10) is just ( o e""zdx) =

7"/, The right-hand side is

o0 (=]
& [0 e dr = 5’-;" 0 o i-ldo = 5’5— r (;-) . (161D
where T'(z) is the gamma funcrion defined by
[+a]
T'(z) = [ e ot ido; z > 0. (1.6.12)
0
Therefore, the area w, of the n-dimensional unit sphere is
271.::/2
B —— 1.6.13
S ey (613

Coming back to (1.6.5), we solve the homogeneous problem using similarity.
Proceeding as in Section 1.2.1, we find that the fundamental solution F(7, ¢) has
the following similarity structure (¢f. (1.2.15)) '

& Flar, o?t) = F@r, t) (1.6.14)
for any positive constant «. Setting
Frt) =172 £(0),6 = rt=1/2, (1.6.15a)
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we see that (1.6.15a) satisfies (1.6.14) and gives the followi . . .
equation for f: g owing ordinary differential

» 8 n-—1 , R
f +(~2-+““~é——)f+~£fmo.

It is easily seen that

f= Ce—63/4’ € = constant,
. . »
is a solution that upon substitution into (1.6.15) gives

c
Fot) = =Ze 4 (1.6.15b)

This solution has the appropriate singularityatr = 0,z = Oanddecaysasr — o0
t > .O or t — o0, r > 0. The other solution of (1.6.15) gives an unbounded
contribution to the tota] heat content in the domain as in the one-dimensional case.

ch? evaluate C, we integrate (1.6.5) over the entire n-dimensional space D, to
obtain

f.D.x./F,dV :—-f:D.x./AFdV+f;;f6(r)5n(r)dV. (1.6.16)

Using Cartesian coordinates we have

T R it 82 F
AFde[ f aF F _
fD f oo —m[ax% et 32 dx,...dx, = 0,

_ (1.6.17)
because for each i = 1, ..., n, 9F/dx; vanishes if any one of its arguments x;

equals ﬁ_oo. The second integral on the right-hand side of (1.6.16) gives §(¢), and
we obtain ) ’

d
‘[...fF,dVﬁ Ef...deV:é(t).
Due Dee
Therefore,

f...[Fa’V:l if >0, (1.6.18)
Doe

as in the c?ne-dimensional case (cf. (1.2.19)). Using the result (1.6.15b) for ¥ in
(1.6.18) gives

C ® —rfar n—1}
A e pr” dr = 1. (1.6.19a)

Changing the integration variable from  to 5 = r2/4z gives

O
271 Cf e¥s i gy = 27! )=
n A w, CT 5 )= 1. (1.6.195)
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Therefore,
1 1
C = = , 1.6.20
2=l I"(n/2) 2rgril ( )
and the fundamental selution is
1 2
I o
F(r,t) = ST g . (1.6.21)
More generally, the fundamental solution at time ¢ at a point P with coordinates
X1, ..., Xp due to a source located at the point Q with coordinates &, & and
turped on at time 7 is
e 6.22
F(rPQ,I'—T)ﬁ W, (1-- )

where we have introduced the notation

reg = | ¥ (i — &) (1.6.23)
i=l

for the distance between the observer at P and the source point Q.

1.6.2 Initial-Value Problem in the Infinite Domain

Consider the general initial-value problem for the three-dimensional diffusion
equation in the infinite domain:

Uy — Ugg = Wyy = Ugz = PX, ¥, 2, 1), (1.6.24a)
u(x, y,2,0) = f(x,3,2). (1.6.245)

Here p and f are prescribed, and p = 0 if t+ < 0. The corresponding one-
dimensional problem was discussed in Section 1.3. The basicideas are the same; we
split (1.6.24) into two problems as in (1.3.2) and solve each using the fundamental

solution. The result is

o0 o0 o0 o0
u(x,y,z,1) = f f f f F(rpg,t — T)p&, 0, ¢, ©)ds dndé dv
=0 JE=woo Jm—00 J{=—00

+j [ [ fE 0, OFreg, )ds dnds,  (1.6.25)
f=won J =00 Jf=—0c0

where r3, = (x — £)2 + (3 — n)? + (z — £)?, and F is given by (1.6.22) with
n = 3. Similar forraulas can be written down for the solution for any n.

(i) Example, axisymmetric problem in two dimensions

Consider the axisymmetric problem in two dimensions

Wy - (ur, + -}ur) = 0, (1.6.26a)
u(r, 0) = f(r). (1.6.265)
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The fundamental solution is (n == 2, rho =& =86+ (y —n)?

a1 @ =8+~ 7)?
F(reg,t - 1) = -—-—————-4x(t g exXp (— 4G =) ! . (1.6.27)

We introduce the polar goordinates r, & for P defined by x = r cos @ y=rsing
and set& = pcos¢, p = psing. Then r2,, = r? — o2 ’

’ . = 0° — 2rpcos(f —
(1.6.27) becomes Fe 0 c0s(@ ). and

o 1 r? 4 p? — 2rp cos(8 — @)
Flreg,t — 1) = m exp (—- prs: . (1.6.28)

In thfa superposition intégral corresponding to (1.6.25) only the second term
contributes, and we use polar coordinates to obtain

pl
er/4¢

o0 2 2
U 1) = —— fc e 1% pf (o) [f e"’”m”/z‘dcﬁ}dp- (1.6.29)
Q

The definite integral with respect to ¢ can be evaluated explicitly. For any positive
constant «, we have

2
/; e Pdg = 2mIy(a), (1.6.30)

vE'here Iy is the modified Bessel function of order zero. Therefore, (1.6.29)
simplifies to

wr? f4r oo
4
u(n ) = — fo Flo)pe™® 1%, ( 52!;) dp. (1.6.31)

1.6.3 Green's Function for Various Simple Domains

The use of image sources to satisfy boundary conditions also generalizes to higher-

d?mensional problems for certain simple geometries. Three planar examples are
discussed next to illustrate ideas.

() The half-plane y > 0 with u(x, 0,1} = 0
Consider
e = (e + yy) = 8(x ~ £)8(y — MBC ~ 7) (1.6.32a)

in the upper half-plane: —00 < x < 00,0 < y < oo for positive constants £, 7,
7. The initial condition is

u(x,y,77) =0, (1.6.32b)
and boundary conditions are

ulx, 0, 1) = ulx, 00, 1) = Q. (1.6.32¢)
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Using a negative image source atx = §,y = -1, = T We obtain Green’s
function using (1.6.22) withn = 2

wr?_ 40 —1)
Gx ~ & y,m1t—1) : [e"’ia/'*(’*f) e ] , (1.6.33)

I}

where
rhop = (x— & + (v —n)’ (1.6.34a)
reg =& =57+ +n (1.6.34b)

Knowing G, we can solve the general initial- and boundary-value problem in
the upper half-plane,

U — Uy = Uyy = P(X, ¥, 1), (1.6.35a)
u(x,y,0) = fx, y), (1.6.35b)
ulx,0,1) = glx, 1), t >0, (1.6.35¢)

for prescribed functions p, f, and g using Green’s function and_ superpos%tion
after the boundary condition (1.6.35¢) is homogenized. The detalls are entirely
analogous to the one-dimensional case discussed in Section 1.4 and are left as an

exercise (Problem 1.6.1). o -

The same ideas can be used to compute Green’s function in the-halfmspace in
three dimensions and to construct Green’s function of the second kind where the
normal derivative of i vanishes along the boundary.

(ii) The quarter-plane x > 0, y = 0 with u(x,0,1) = w0, y,1) =0

Green’s function satisfies

= (e = Uyy) = 8(x — E)S(y — M3 — 1), (1.6.36a)
u(x,y,t7) =0, (1.6.36b)
u(x,0,)=0, x >0, (1.6.36¢)

u(0,y, ) =0, y > 0. (1.6.364)

For this domain, the positive primary source of unit strength is located at x =
g >0,y =7 > 0and turned on at time ¢ = 7. Inorde:rto_haveu = 0Oon
both the positive x- and y-axes we need to introudce negative 1mage sources of
unit strength at the points x = £,y = —pandx = —§, y = n- We_alsg need
a positive image source of unit strength at x = —&,y = —7. This maintains the
symmetry relative to the two coordinate axes.

Therefore, the solution is given by

1 [e_,lz/a(;_r) _ g-—r%/a(r——r)

Gx, &y mt—1)= 1)

_ gD 4 e—r3/4cr-r>] , (1.6.37)
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where
=g = (= £+ (y - 9)? (1.6.38a)
R = -5+ +n (1.6.385)
rP= G+ + (- )P (1.6.38¢)
ri=(x+8%+ (y + n) (1.6.384)

Using (1.6.37) we can solve the general initial- and boundary-value problem in
the quarter-plane. See Problem 1.6.2. Problem 1.6.3 concerns the solution in the
Quarter plane with u,(x, 0, ) prescribed.

The symmetry idea also generalizes to corner domains in higher dimensions,
e.g.x = 0,y > 0,z > 0 in three dimensions.

(iii) The infinite strip 0 < y < 1, ~00 < x < oo with
w(x,0,8) =ulx,1,) =0

Green’s function of the first kind for this domain satisfies

Ur — Uy — Uy = 8(x — EIS(y — M@ — 1), (1.6.39a)
ux,y,t7) =0, (1.6.395)
u(,0, N =ulx,1,) =0, r > 0. (1.6.39¢)

The solution of (1.6.39) is entirely analogous to the one- dimensional version
(1.5.2), and we have

Gr—&ymt—0) = 3 (Flat—1)=FFnt-1)}), (1.6.40)

where )
e—rzj‘ir
Flryr) = , (1.6.41)
rZe=(x~ 8%+ [y — @n+ P, (1.6.42a)
Fo= (=~ 8%+ Iy ~ (2n — P (1.6.42b)

We can now use (1.6.40) to solve the general initial- and boundary -value prob-
lem in the infinite strip. See Problem 1.6.4a. This problem can also be solved

by Fourier transforms with respect to x followed by separation of variables as
discussed in Problem 1.6.4b.

Boundary-value problems where » yisspecifiedony = Oory = 1 orboth can
also be solved using the appropriate Green’s function as in Problem 1.5.2.

Problems

1.6.1. Use the homogenizing transformation wix, y,2) = u(x,y, t) — g(x, 1)
to show that if u solves (1.6.35), then w is the solution of

We = Wy ~ Wyy = h(x, 1) +8(Ok(x,y),  (1.6.43q)
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wix,y,07) =0, (1.6.43b)
wix,0,1) =0, t >0, (1.6.43¢)

where
R(x, 1) = plx, y. 1) ~ &(x, 1) + ge(x, 1), (1.6.44a)
k(x,y) = f(x,y) — g(x,0). (1.6.44b)
Using Green’s function (1.6.33), the solution of (1.6.35) then becomes

ulx, v, t) =f0r foo fomh(s, )G — &, 5,0, ¢t~ T)dnd§ dt

+ [ [ ke e — gy mnana
woe w0
+ g(x, ). (1.6.45)
Develop the result in (1.6.45) using (1.4.18) to obtain (see (1.4.21))

1 ! 1 ¥
u(x,)’,t)=2ﬁ[0 f_”"‘rﬂterf(z ”I“'E)
<[ ne sgeeosFi=gg | ao

—o0

1 y ) [ * ~(x=8) 1% g
- erf { 8. 0e §
2/ ( 2»\/? -0
e poe T
4+ L f f FE 7 [e—[cx B4
4t Jooo Jo
- e—[(x«-f)z+(}'+n}2]/4f] dn dt. (1.6.46)

1.6.2. Consider the general initial- and boundary-value problem in the quarter
planex > 0,y = O

U = g — Uyy = P, ¥, 1), (1.6.47a)
u(x,y,0) = f(x, », (1.6.47b)
u(x,0,2) = gi(x, 1), (1.6.47¢)
u(©,y, 1) = g0, 1). (1.6.47d)

Introduce the homogenizing transformation
w(x, y, 1) = u(x, y, 1) — alx, y, 1), (1.6.48)
where « is a function that satisfies «(x, 0, 1) = gi(x, 1), (0, ¥, 1) =
22(y, ). For example, we may choose
g1(x, 1)x g2y, 1)y (1.6.49)

D= R VT

1.6.3.

1.6.4a.
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Show that if u satisfies (1.6.47), then w is governed by

Wr = Wer = Wyy == 20X, ¥, 1) + §()k(x, y), (1.6.50a)
wx,y,07) =0, (1.6.508)
w(x,0,) = w®@,y,0)=0, t >0, (1.6.50c)

where

h(xv ¥y, I) Ep(x: ¥, f) - at(xs Y, t) -+ axx(x’ ¥, I)
+ oty (%, ¥, 1), (1.6.51a)
k(x,y) =f(x, y) — a(x, y,0). (1.6.518)

Solve (1.6.50) using Green’s function ( 1.6.37).

Whatis Green’s function for the corner domain 0 2x<o,0<y <o
with boundary conditions (0, y,z) = 0, u,(x,0,7) = 07 Use this
result to calculate the solution of (1.6.47), where we replace (1.6.47¢) by
iy(x,0,1) = ga(x, 1).

Consider the diffusion equation in two dimensions in the infinite strip
=00 < X < 00,0 = y < 1 with prescribed source distribution, and
initial and boundary values for u given by

Wy — Uge ~ Uyy = D(X, ¥, 1), (1.6.52a)
ulx, ¥, 0 = f(x,y), (1.6.525)
w(x,0,18) = g1(x,0), t > 0, (1.6.52¢)
w(x, 1,2) = go(x, 1), t > 0. (1.6.52d)

Introduce the homogenizing transformation

wix, y, 1) = u(x,y,t) + Oy~ DgiCx, 1) — yga(x, t) (1.6.53)

to show that w satisfies

Wy — Wex ™ Wyy = A{x, Y, £} + S{k(x, y), (1.6.54a)
wix,y,07) =0, (1.6.54b)
w(x,0,1) =wx,1,) =0, 1 > 0, (1.6.54¢)
where -
h(x, y,0) =p@x, 3, 1) + 1~ g1, — g1..)

= y(g, — 82, (1.6.55)
k(x,y) =f(x, ) + » ~ Dgi(x, 0) — yga(x, 0). (1.6.56)

Calculate the solution of (1.6.54) using Green’s function (1.6.40).

- An alternative approach for solving (1.6.52) is to take Fourier transforms

with respect to x. Show that the transformed variable ulk, v, 1) satisfies



54 1. The Diffusion Equation

(overbars indicate the Fourier transform, see (A.2.9a))

T, — Hyy + k% = Pk, ¥, 1), (1.6.57a)
Tk, y,0) = fk, ¥, (1.6.57b)
ik, 0,1) =gk, 1), ¢ > 0, (1.6.57¢)
ak, 1,1) = Bk, 1), £ > 0. (1.6.57d)

In preparation for solving (1.6.57) by separation of variables, introduce
the homogenizing transformation (1.6.53),

Tk, y, 1) = wk. 3, 1) + & — D&k 1) — yELk, ), (1.6.58)
and show that W satisfies

. 2= ] t N
G, — Wyy + K = Ty~ D@y, +K°8)) — Y@z, +K82) = gk, ¥, 1)

{1.6.594)
F 7 — y8,(k, 0) = rk, ¥),
Bk, y, 0) = Flk ) -+ (v — DZ1K, 0) — ¥y&2(k,
Rl (1.6.59b)
wWk,0,8) =Wk, 1,1) = 0, >0 (1.6.59¢)
Solve (1.6.59) by separation of variables in the form
o]
Wk, v, 1) = Z B, (k, t) sin ny, (1.6.60)
n=1
where
B,k 1) = [B (k, 0) + f e r)e‘"z"z""kz)’dr:l g T
n 1 - n ’ n 3
’ (1.6.61)
and B, (k. 0), g.(k, t) are the Fourier coefficients
i
B,(k,0) =2 f r(k, y) sin nmy dy, (1.6.62a)
0
1
gnlk.t) = 2[ gk, y, ) sinnwydy. {1.6.62b)
0
1.7 Burgers’ Equation
The quasilinear diffusion equation &
u; + uty — €y =0, € > 0, (1.7.1)

is atributed to Burgers, who in 1948 proposed itasa mam.ematica.l mod;lﬁf:r
tarbulence [7]. Actually, (1.7.1) was first studied by Bateman71ri)19 15 111: rx:}ct)} t:i neﬁ
i a fluid wi iscosi . Although (1.7.1) may be
tion of a fluid with small viscosity € [5]. Al : !
Zhsean;(i)miting form of the x-component of the momentum equaton for viscous
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N

flows, as first shown in [32], it does not model turbulence. N evertheless, (1.7.1) is
a fundamental evolution equation that arises in a number of unrelated applications
where viscous and nonlinear effects are equally important. Examples are discussed
in [16] and in Section 6.2.5 of [26]. This equation also models traffic flow and is
derived in Section 5.1.2.

Hopf [24], and Cole [9] independently showed that (1.7.1) may be transformed
to the linear diffusion equation of this chapter. We now work out this transformation

and discuss how it may be used to solve initial- and boundary-value problems for
(L.7.1).

1.7.1 The Cole-Hopf Transformation

This transformation of dependent variable # — v is defined by

v
u = —2¢ =, (1.7.2)
v
We then calculate
v (Y]
U, = =2 —— 4 e x2{,
v v
Urx v?
iy = —2J¢ % +2e-—~2»,
v v
v Y 403
Uy = —2€ xxx + 6 X 2xx - 3; .
v v v

Substituting these expressions into (1.7.1) gives

v
~= (€bex = v) = (€vex — v)x = 0, (1.7.3)
Thus, any solution v(x, r) of (1.7.3), when used in (1.7.2), gives an expression
u(x, 1), that satisfies (1.7.1).
In particular, if v satisfies the diffusion equation

EUry — U = 0, (1.7.4)

it also solves (1.7.3) trivially, and the resulting u(x, ) satisfies (1.7.1).

Although the parameter € may be transformed out of (1.7.1) (and hence also out
of (1.7.4)) by an appropriate scaling of the x and 7 variables, it is more instructive
to retain it in the solution because we can then study how the results behave in
the limit € — 0. This is a singular perturbation problem that we will discuss in

Section 8.2.3.
1.7.2 Initial-Value Problem on —00 < x < 00

Let us study how we can use the preceding result to solve the initial-value problem
for Burgers’ equation:

Uy + Uity — €l =0, —0C < x < 00, (1.7.5a)
ulx, 0) = f(x). (1.7.5b)
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According to (1.7.2), the new variable v(x, £) must initially satisfy
2ev,{x, 0}
vix, 0)

This is a linear first-order ordinary differential equation for v(x, 0) and has the
general solution

fx) =~ (1.7.6)

v(x,0) = cxe{_mﬂfo J9ds — gg(x), o = constant. (1.7.7)

Thus, fora given f (x), we compute g{x) by quadrature. Of course, itis understood

that the integral f; F(s)ds exists. So, we need to solve the following linear problem
forv(x, 1):

y, — €Ugy = 0, =00 < X < 00, (1.7.8a)

v(x, 0) = ag(x). (1.7.85)

This is essentially (1.3.3) and has the solution (1.3.9) after replacing u —> v,
[~ ag,t > €l

Ve = ﬂ%}? f " @) g, (1.7.9)

1t then follows that

. ® gE)x —§) —~(x—E)2 /et
ve(x, 1) = T /_m 5o e dE. (1.7.10)

Therefore, using (1.7.2) to compute u(x, 1) gives
%, g(g) &5 gm =8/ gg
[, g(E)e~ -k

in which the constant & cancels out.
We shall use these results in discussing discontinuous solutions of the first-order
equation

u(x, 1) = , (1.7.11)

w, +uuy =0 (1.7.12)

in Chapter 5. We compute (1.7.11) explicitly for the case where f(x) is piecewise
constant in Problem 1.7.1.

1.7.3 Boundary-Value Problems

The solution of Burgers’ equation on the semi-infinite or bounded interval in x is
more complicated than the solution we have derived in (1.7.11). We now consider
some special cases.

() Semi-infinite interval: 0 £ x < 0
The problem is

Uy iy — €Uz =0, 0 £ x <00, (1.7.13a)
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w(x,0) = F{x), (1.7.138)
(0, 1) = h(2), t > 0. (1.7.13¢)

Using (1.7.2) we obtain i
o(x, ::) the following problem for the new dependent variable

Vi — €Ugy =O, (1714a)

vix, 0) = aexp (- = fo f(s)ds) = ag(x), (1.7.14b)
A@)v(0, 1) + 2ev,(0, 1) = 0.

. (1.7.14¢)
h = constant and f = 0, (1.7.14b) and (1.7.14¢) reduce to
v(x, 0) = ¢ == constant, (1.7.15a)
Av(x, 0) + 2eu,(x, 0) = 0, h = constant. (1.7.158)
In (1.7.14b) ar}d (1.7.15a), the constant « is arbitrary.
To use previously calculated results, we set
T=v~q [ =¢, T=x
to obtain
j,— — Tz = 0, (1.7.16a)
UEJ‘E, 0) =0, (1.7.165)
ATCE, 0) 4+ 2e¢T2(F, 0) = —hee. (1.7.16¢)
The solution is given by (1.4.4 i ]
x._),"x*,r.__}“f,g y(..7)w1thu——>v,a—~>h,b—+2€,c=~——ho¢,

UX, 1) = —a | erfc (f_) - BT KT X — 2hi/2e
l: Wi exp 7oz P erfc ____2-.\/_._;...“

or (1.7.17a)
U(x,’)”—“a[l—erfc( x )+ex h—zim_h_’f x — ht
e ) TP\ e T | 2JE?)'
We now use this result to evaluate (1.7.2) for u(x, r) and obtain (17178
LAt
ulx,r) =k erfe ( zJé?) 17.18)

k 2 )
exp ('z‘f - ﬂai) erf (f‘—ﬁ) +erfc(§‘%)
In [31], this result is attributed to J.D. Cole.

5 ifhis not constant, the above approach does not apply, but we may use the idea
1scussed in Section 1.4.7 of replacing (1.7.14c) by an unknown boundary value
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v(0, 1) = k(z), then deriving an integral equation for k(z). The details are entirely
analogous to those discussed in Section 1.4.7. See Problem 1.7.2.

(ii) Finite interval 0 = x = 7

The following initial- and boundary-value problem for Burgers’ equation is
discussed in [9]:

U, +un, = €uygy, 0 S x =, (1.7.19a)
u(x,0) = f(x), (1.7.198)
u0, ) = u(m, ) =0, t > 0. {1.7.19¢)
The problem for v(x, 7) defined by (1.7.2) satisfies
Uy = €Uz = 0, (1.7.20a)
w(x, 0) = ag(x), « = constant, (1.7.208)
v (0, 1) = v, 2) =0, £ >0, (1.7.20¢)

where « is arbitrary and g(x) is defined in (1.7.14b).
The solution for v(x, t) is easily derived using separation of variables in the
form

o
v(x, ) = 229 + ;ane”"z" cos nx, (1.7.21)
where
20 7
ap = = g(x) cosnx dx. (1.7.22)
0

The transformation relation (1.7.2) gives the solution of (1.7.19) in the form

o —nter o
Y ey Rane sin nx

. 1.7.23
2+ $°%° | ane "¢ cos nx ( )

u(x, 1) = 2¢
A discussion of the qualitative features of the solution is given in [9]. The problem
where f (x) has a discontinuity in the interval 0 < x < 1isdiscussed in [29]. This

problem is of interest in understanding the long-term behavior of a shock layer for
Burgers’ equation. We still study shock layers in Chapter 3.

Problems

1.7.1. Consider Burgers’ equation on —o0 < X < ©0,

Wy + Uty = €Uyg. (1.7.24)
a. For the piecewise constant initial condition
1 ifx <0,
ul(x, 0) = {_1 x>0, (1.7.25)
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derive the solution in the form
—x/¢ -
S D) = e erfc(%)—mrfc(—-—"—’%)
. - — ; 1.7.26
e x/eerfc(%)-{—erfc(w;};‘%) ( )
b. For the piecewise constant initial condition
~1 ifx <0
w(x, Q) = ’
(x, 0) {1 ifx > 0, 1.7.27m
derive the solution in the form
— erfe Xt ~x/e LTE,
u(x, 1) = (2"‘—’)+e erfc(?"/j_') (1.7.28)

erfc (;j(ir) 4 e=x/€ apfe (%)

L(C’I) Jc(l), . (1':‘29)

wh_ere k(t)is a_s yet unspecified. Use the results in Sections 1.4.2-1.4.3 to
write the solution for v(x, t) in terms of the unknown (¢} in the form

o o0
vix, 1) = W J£ g§) [e“"‘"‘f)z/““ - e“‘*“z"‘“:[ dk
+ [k —x
fo (r)erfc(2 z“r)dr
X
-+ k(0) erfc (2@) . (1.7.30)

Use the condition (1.7.14¢) to derive the following i i
. ‘ ] W t
PP i ing integral equation for

ROk = ¢ -+ f— ! k(r) 7
k() (1) 211 jo. Jf_rdr’ (1.7.31)
where

_ € G 2
() = 20", — [1 - fo g " -/-4“d(§2/4er)] . (17.32)
Note that ¢ () = Qif F(x) = 0.




