Some Jargons for PDEs
» Homogeneous equation:

Ut — Uxx = 0
» Inhomogeneous equation:
Ut — Uxx = g(X, t),

where g is a known function, representing a heat
source/sink.

» Inhomogeneous Dirichlet boundary conditions:
u(0,t) = g(1).

» Inhomogeneous Neumann boundary conditions:
ux(0,1) = g(t).

» Homogeneous boundary condition:

u(0,t) = 0or ux(0,f) =0.



Variations on the theme of 1-D Heat Diffusion

(Semi-)Infinite domain
» Time-dependent
» Dirichlet B.C.
» Homogeneous boundary-value problems with zero or
non-zero IC (we already covered it.)
Sec 4-15: Instantaneous Heating or Cooling, Sec. 4-16: Cooling
of the Oceanic Lithosphere.

» Inhomogeneous boundary-value problems (case study 1).
Sec 4-14: Periodic Heating.

» Neumann B.C. (case study 2)
Sec 4-26: Heating or Cooling by a Constant Surface Heat Flux.

> Steady state — special (and much simpler!) cases of the

corresponding time-dependent type.
Sec 4-6 to 4-12.

Finite domain (case study 3)
» Once you figure out the Green’s function, the procedure to
get a solution is the same.
Sec 4-17: Plate cooling model of the oceanic lithosphere:
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» The full set of equation:

U — Uy =0, 0< x <00, 0< T <00,
u(0,t) = g(t), u(oo,t) =0,
u(x,0) =0.

CRSHC)

» Recall that the fundamental solution and the Green’s
function for the semi-infinite domain were derived for a
homogeneous boundary value problem (BVP). We put a
negative image source to enforce the boundary condition!

» So, we need to perform homogenizing transformation in
order to utilize them in the current inhomogeneous BVP.

» We define a new dependent variable (i.e., a function for the
temperature field) as

w(x,t) = u(x,t) — g(t). 9)
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» We can easily see that w obeys the inhomogeneous
equation with homogeneous BC:

Wi — Wxx = —g(t), 0 < x <00, 0 << o0, (10)
w(0,t) =0, w(oo,t) =—g(t), (11)
w(x,0) = —g(0). (12)

» Note that the condition at x = oo doesn’t affect the image
source technique.

» This problem is equivalent to
Wi — Wi = —g(t) — g(0)d(1), (13)
w(0,t) =0, (14)
w(x,0)=0, t>0. (15)
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» The solution in the general form is

w(x, 1) / / 2\/ﬁ [0 /400-m) _ g (e47/4-7)] dgarr

e—(x— /4t gq=(x+€)?/4t] ge.

2\/771‘

» This solution involves two definite integrals

x—€)2/4(t— T)d i7
\F/ Vi—T1 & (17)

(X+§ 2/4(t— T)d 18
f/ V-1 ¢ (18)

and



Case Study 1/3

» To evaluate /, we define a new integration variable n such
thatn = (x — &)/(2vt — 7).

» Also, we note that the exponent of the integrand for /
vanishes at £ = x, which is by definition within the domain,
the interval of integration. So we divide the integration
interval into [0, x] and [x, co] to express the solution in term
of the error function.

» By the change of variable, we get

1 0 -n?(_ T
/_ﬁ[/x/zme (dn)+/0 o (dn)]

1 X/2\/t—T 5 ) 5 (19)
= / e dn—i—/ e T dn|.
0 0

5
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» From the definition of the error function, we get

= 1erf(2\/ﬁ) 1 (20)

» Evaluation of K is straightforward so we obtain
K=—

0 1
e d ferfc ( > (21)
VT /x/z\/ﬁ 77] 2Vt—1
» With /and K, w(x,t) is given as

X, t) = /Otg(f) erfc <2\/;(_77> dr+9(0) erfc <2\[) —g(t).
(22)

» Since u(x,t) = w(x,t)+ g(t),

x,t) = /Otg(f) erfc (2\/;(_77> dr + g(0) erfc (2\[>
(23)
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» In a special case g(t) = c (constant), the half-space
cooling solution is recovered:

u(x, t) = cerfc(x/2V1).

> If g(t) = ccos(wt) representing a periodic heating,

u(x,t) = /Ot—Cw sin(wr) erfc <2\/;(_77> dr+cerfc (2(;22 .

» We can get a different expression of u(x, t) by integrating
by parts the first term of (23):

7)o XE/4t=)

g(r
u(x, 1) = 2f/ = dr. (25)

» The integration is not easy but we can always evaluate the
solutions numerically. The tangible form of the solution is
given in Sec. 4-14 of T&S.
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» Numerically evaluated similarity solutions show good
agreement with the analytic solution given in Sec. 4-14'

1.0 Sim t=1.01 days
T&S

= Sim t=1.2 days

m— Sim t=1.45 days

== Sim t=1.7 days

800

~1.01
"The two show good agreement for the tested values of t. However when
t < 1day or t > 1 day, they show significant discrepancy. | believe it
suggests that we should be very careful when doing numerical integrations in
(24) or (25).
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» However, it is more difficult to extract useful information
directly from numerical solutions: e.g., surface heat flow.

» There might be a way of getting a closed form solution
from (24) or (25).
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> We also want to know the solution to the homogeneous
Neumann type BVP.

» The purpose is to get the Green’s function, which is the
solution for the following equation:

Ut — Uxx = 0(X —&)J(t), 0 < x <0, £>0, (26)
ux(0,t)=0, t>0, (27)
u(x,0) =0. (28)

> Like we obtained the Green’s function for the
homogeneous Dirichlet BVP, we use the image source
technique. This time, however, we need a positive image
source.
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» So, our Green’s function is the sum of two fundamental
solutions:

Gn(x, &) =F(x =&, )+ F(x+¢&,t). (29)

» For the following homogeneous Neumann BVP,

Ut — Uxx = p(x, 1), 0 < x, 0< ¢, (30)
ux(0,t) =0, t >0, (31)
u(x,0) =0, (32)

the solutions is

t o)
u(x, 1) = /0 dr /0 (6, 7)G(X. €, t — T)de.  (33)
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» If we have a non-zero initial condition, u(x,0) = f(x), w
can simply add the following contribution to the solution
(33):

u(x, 1) = /0 1) Gu(x. €, k. (34)

» As in the inhomogeneous Dirichlet BVP, we can perform
the homogenizing transformation for an inhomogeneous
Neumann BVP with with ux(0, t) = h(t):

w(x, t) = u(x,t) — x h(t). (35)

» The solution boils down to this simplified form:

eX2/4tT)
u(x,t) ———drT. 36
f/ =0 @
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» The final case study is concerned about the Dirichlet BCs
on a finite domain: 0 < x < L.

» To enforce the homogeneous B.C. on the both ends of the
domain, we need infinite number of image sources.

» Any finite sum will eventually fail to satisfy the boundary
conditions. Let’s try to understand this point by looking at a
three-source example in the next slide.

» The Green’s function for the heat conduction in a finite

domain with Dirichlet BCs must be an infinite sum of the
fundamental solutions:

G(x,&t—1) = i [F(x—(2nL+¢),t—7)— F(x —(2nL—¢),t — 71)].

37)
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