
Some Jargons for PDEs
▶ Homogeneous equation:

ut − uxx = 0. (1)

▶ Inhomogeneous equation:

ut − uxx = g(x , t), (2)

where g is a known function, representing a heat
source/sink.

▶ Inhomogeneous Dirichlet boundary conditions:

u(0, t) = g(t). (3)

▶ Inhomogeneous Neumann boundary conditions:

ux(0, t) = g(t). (4)

▶ Homogeneous boundary condition:

u(0, t) = 0 or ux(0, t) = 0. (5)



Variations on the theme of 1-D Heat Diffusion
(Semi-)Infinite domain
▶ Time-dependent

▶ Dirichlet B.C.
▶ Homogeneous boundary-value problems with zero or

non-zero IC (we already covered it.)
Sec 4-15: Instantaneous Heating or Cooling, Sec. 4-16: Cooling
of the Oceanic Lithosphere.

▶ Inhomogeneous boundary-value problems (case study 1).
Sec 4-14: Periodic Heating.

▶ Neumann B.C. (case study 2)
Sec 4-26: Heating or Cooling by a Constant Surface Heat Flux.

▶ Steady state → special (and much simpler!) cases of the
corresponding time-dependent type.
Sec 4-6 to 4-12.

Finite domain (case study 3)

▶ Once you figure out the Green’s function, the procedure to
get a solution is the same.
Sec 4-17: Plate cooling model of the oceanic lithosphere.



Case Study 1/3
▶ The full set of equation:

ut − uxx = 0, 0 ≤ x < ∞, 0 ≤ t < ∞, (6)
u(0, t) = g(t), u(∞, t) = 0, (7)
u(x ,0) = 0. (8)

▶ Recall that the fundamental solution and the Green’s
function for the semi-infinite domain were derived for a
homogeneous boundary value problem (BVP). We put a
negative image source to enforce the boundary condition!

▶ So, we need to perform homogenizing transformation in
order to utilize them in the current inhomogeneous BVP.

▶ We define a new dependent variable (i.e., a function for the
temperature field) as

w(x , t) ≡ u(x , t)− g(t). (9)
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▶ We can easily see that w obeys the inhomogeneous
equation with homogeneous BC:

wt − wxx = −ġ(t), 0 ≤ x < ∞, 0 ≤ t < ∞, (10)
w(0, t) = 0, w(∞, t) = −g(t), (11)
w(x ,0) = −g(0). (12)

▶ Note that the condition at x = ∞ doesn’t affect the image
source technique.

▶ This problem is equivalent to

wt − wxx = −ġ(t)− g(0)δ(t), (13)
w(0, t) = 0, (14)
w(x ,0) = 0, t > 0. (15)
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▶ The solution in the general form is

w(x , t) =
∫ t

0

∫ ∞

0

−ġ(τ)
2
√
π(t − τ)

[
e−(x−ξ)2/4(t−τ) − e−(x+ξ)2/4(t−τ)

]
dξdτ

−
∫ ∞

0

g(0)
2
√
πt

[
e−(x−ξ)2/4t − e−(x+ξ)2/4t

]
dξ.

(16)

▶ This solution involves two definite integrals

I =
1√
π

∫ ∞

0

e−(x−ξ)2/4(t−τ)

2
√

t − τ
dξ (17)

and

K =
1√
π

∫ ∞

0

e−(x+ξ)2/4(t−τ)

2
√

t − τ
dξ (18)
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▶ To evaluate I, we define a new integration variable η such
that η = (x − ξ)/(2

√
t − τ).

▶ Also, we note that the exponent of the integrand for I
vanishes at ξ = x , which is by definition within the domain,
the interval of integration. So we divide the integration
interval into [0, x ] and [x ,∞] to express the solution in term
of the error function.

▶ By the change of variable, we get

I =
1√
π

[∫ 0

x/2
√

t−τ
e−η2

(−dη) +
∫ −∞

0
e−η2

(−dη)

]

=
1√
π

[∫ x/2
√

t−τ

0
e−η2

dη +

∫ ∞

0
e−η2

dη

]
.

(19)
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▶ From the definition of the error function, we get

I =
1
2

erf
(

x
2
√

t − τ

)
+

1
2
. (20)

▶ Evaluation of K is straightforward so we obtain

K =
1√
π

[∫ 0

x/2
√

t−τ
e−η2

dη

]
=

1
2

erfc
(

x
2
√

t − τ

)
. (21)

▶ With I and K , w(x , t) is given as

w(x , t) =
∫ t

0
ġ(τ)erfc

(
x

2
√

t − τ

)
dτ+g(0)erfc

(
x

2
√

t

)
−g(t).

(22)

▶ Since u(x , t) = w(x , t) + g(t),

u(x , t) =
∫ t

0
ġ(τ)erfc

(
x

2
√

t − τ

)
dτ + g(0)erfc

(
x

2
√

t

)
.

(23)
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▶ In a special case g(t) = c (constant), the half-space

cooling solution is recovered:

u(x , t) = c erfc(x/2
√

t).

▶ If g(t) = c cos(ωt) representing a periodic heating,

u(x , t) =
∫ t

0
−cω sin(ωτ)erfc

(
x

2
√

t − τ

)
dτ+c erfc

(
x

2
√

t

)
.

(24)

▶ We can get a different expression of u(x , t) by integrating
by parts the first term of (23):

u(x , t) =
x

2
√
π

∫ t

0

g(τ)e−x2/4(t−τ)

(t − τ)3/2 dτ. (25)

▶ The integration is not easy but we can always evaluate the
solutions numerically. The tangible form of the solution is
given in Sec. 4-14 of T&S.
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▶ Numerically evaluated similarity solutions show good

agreement with the analytic solution given in Sec. 4-141

1The two show good agreement for the tested values of t . However when
t ≪ 1 day or t ≫ 1 day, they show significant discrepancy. I believe it
suggests that we should be very careful when doing numerical integrations in
(24) or (25).



Case Study 1/3

▶ However, it is more difficult to extract useful information
directly from numerical solutions: e.g., surface heat flow.

▶ There might be a way of getting a closed form solution
from (24) or (25).
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▶ We also want to know the solution to the homogeneous
Neumann type BVP.

▶ The purpose is to get the Green’s function, which is the
solution for the following equation:

ut − uxx = δ(x − ξ)δ(t), 0 ≤ x < ∞, ξ > 0, (26)
ux(0, t) = 0, t > 0, (27)
u(x ,0) = 0. (28)

▶ Like we obtained the Green’s function for the
homogeneous Dirichlet BVP, we use the image source
technique. This time, however, we need a positive image
source.
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▶ So, our Green’s function is the sum of two fundamental
solutions:

GN(x , ξ, t) ≡ F (x − ξ, t) + F (x + ξ, t). (29)

▶ For the following homogeneous Neumann BVP,

ut − uxx = p(x , t), 0 ≤ x , 0 ≤ t , (30)
ux(0, t) = 0, t > 0, (31)
u(x ,0) = 0, (32)

the solutions is

u(x , t) =
∫ t

0
dτ

∫ ∞

0
p(ξ, τ)GN(x , ξ, t − τ)dξ. (33)
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▶ If we have a non-zero initial condition, u(x ,0) = f (x), we
can simply add the following contribution to the solution
(33):

u(x , t) =
∫ ∞

0
f (ξ)GN(x , ξ, t)dξ. (34)

▶ As in the inhomogeneous Dirichlet BVP, we can perform
the homogenizing transformation for an inhomogeneous
Neumann BVP with with ux(0, t) = h(t):

w(x , t) ≡ u(x , t)− x h(t). (35)

▶ The solution boils down to this simplified form:

u(x , t) = − 1√
π

∫ t

0
h(τ)

e−x2/4(t−τ)

√
t − τ

dτ. (36)
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▶ The final case study is concerned about the Dirichlet BCs
on a finite domain: 0 ≤ x ≤ L.

▶ To enforce the homogeneous B.C. on the both ends of the
domain, we need infinite number of image sources.

▶ Any finite sum will eventually fail to satisfy the boundary
conditions. Let’s try to understand this point by looking at a
three-source example in the next slide.

▶ The Green’s function for the heat conduction in a finite
domain with Dirichlet BCs must be an infinite sum of the
fundamental solutions:

G(x , ξ, t − τ) ≡
∞∑

n=−∞
[F (x − (2nL + ξ), t − τ)− F (x − (2nL − ξ), t − τ)] .

(37)
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