
Diffusion Equation

▶ Here is our “heat equation”:

∂T
∂t

= κ∇2T , (1)

where κ = k/ρcp is the heat diffusivity.

▶ The heat equation describes the heat transfer by
conduction.

▶ The rate of temperature change ∝ net flux of heat ∝
temperature gradient
The rate of concentration of a chemical species ∝ net flux
of the material ∝ concentration gradient.

▶ So, this type of pde can describe the general class of
phenomena, called “diffusion.”



Diffusion Equation

▶ Let’s learn about some qualitative properties of the
diffusion equation.

▶ Note that the r.h.s is the “curvature”. So, the equation
implies that temperature changes fastest where the
“curvature” is the greatest.

▶ When does the time-dependence vanish? When a
temperature distribution is a harmonic function (i.e.
functions satisfying the Lapalace equation, r.h.s. = 0). The
simplest examples are a constant temperature or a
constant gradient of temperature.

▶ Think about a sinusoidal temperature distribution and
qualitatively predict how that temperature profile would
change with time.



Diffusion Equation

▶ Recall the unit of heat diffusivity, κ: [m2/s].

▶ Purely based on the dimensional analytical argument, we
can get a length scale from κ: ∆l =

√
κ∆t , called

characteristic thermal diffusion distance.

▶ To understand the physical meaning of this relationship,
let’s look at this experiment.
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▶ κsteel = 7 × 10−6 m2/s, κbrass = 33 × 10−6 m2/s, and the
melting front of brass propagated about XX (tbd) times
longer distance than that of steel.

▶ Since both wires were heated for the same ∆t ,
∆lbrass/∆lsteel =

√
κbrass/κsteel =

√
33/7 ≈ 2.9.



Diffusion Equation
▶ It is useful to work out the “fundamental solution” to the

diffusion equation at this point.

▶ The heat (diffusion) equation (1) can be
non-dimensionalized by setting T = Tref u, x = Lx ′ and
t = tref t ′ where u and primed variables are
non-dimensional temperature, spatial variable and time,
respectively while Tref , L and tref and the corresponding
reference values or “scales”.

▶ By substituting these definitions into (1), we get (in 1-D
case)

∂ (Tref u)
∂ (tref t ′)

= κ
∂2 (Tref u)

∂ (Lx ′)2

⇒ ∂u
∂t ′

= κ
tref

L2
∂2u
∂x ′2

(2)



Diffusion Equation
▶ Since L and tref can always be chosen such that

κ(tref/L2) = 1, we get the following non-dimensional
diffusion equation:

∂u
∂t

=
∂2u
∂x2 , (3)

or in the simplified notation,

ut = uxx (4)

where variables have been de-primed since there is no risk
of confusion.

▶ The fundamental solution to the one dimensional diffusion
equation is the solution to the following problem:

ut − uxx = δ(x)δ(t), ;−∞ < x < ∞;0 ≤ t < ∞, (5)
u(x ,0) = 0, (6)
u(x , t) → 0 as |x | → ∞. (7)



Diffusion Equation

▶ The solution to this pde is called fundamental because we
can use it to solve the following general initial-value
problem on the infinite domain:

ut − uxx = p(x , t);−∞ < x < ∞;0 ≤ t < ∞, (8)
u(x ,0) = f (x), (9)
u(x , t) → f (±∞) as x → ±∞. (10)

▶ Assume that we have found the solution of (5)-(7) in the
form u = F (x , t). It is possible to use this result to obtain a
second solution u = G(x , t) by setting x̄ = βx and t̄ = γt
and defining G by

G(x , t) ≡ αF (βx , γt) = αF (x̄ , t̄) (11)

for positive constants α, β and γ.



Diffusion Equation
▶ We compute Gt = αγFt̄ , Gxx = αβ2Fx̄ x̄ and use the fact

that for any constant c, we may set

δ(cx) → 1
|c|

δ(x). (12)

▶ The above property is derived from the definition of the
Dirac delta function:∫ ∞

−∞
δ(cx)f (x)dx =

∫ ∞

−∞
δ(y)f (y/c)

dy
c

=
1
c

f (0).

▶ If G(x , t) is to be a solution of (5)-(7), we must have

Gt − Gxx = δ(x)δ(t), G(x ,0) = 0, G(x , t) → 0 as |x | → ∞.
(13)

▶ Expressing Gt and Gxx in terms of Ft̄ and Fx̄ x̄ and using
δ(x)δ(t) = δ(x̄/β)δ(̄t/γ) = βγδ(x̄)δ(̄t) in the above
equation gives

αγFt̄ − αβ2Fx̄ x̄ = βγδ(x̄)δ(̄t), (14)
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▶ Since F (x̄ , t̄) itself is a solution satisfying
Ft̄ − Fx̄ x̄ = δ(x̄)δ(̄t), G(x , t) can be a solution only if
β2/γ = 1 and β/α = 1; that is, if β = α and γ = α2. Thus,
G(x , t) must be of the form

G(x , t) = αF (αx , α2t). (15)

▶ By this, we didn’t find any new solution to the diffusion
problem (5)-(7). Rather, since the solution should be
unique we have only found the similarity structure of the
solution F .

G(x , t) = F (x , t) = αF (αx , α2t). (16)

▶ That is to say, if we replace x by αx and t by α2t in F and
then multiply the result by α (for any α > 0), the resulting
expression is identical to F(x,t).
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▶ This similarity property implies that F (x , t) must be of the
form

F (x , t) =
1√
t
f
(

x√
t

)
, or

1√
t
g
(

x2

t

)
, or

1
x

h
(

x√
t

)
, . . . .

(17)

▶ Any of an infinite number of possibilities that satisfies the
similarity condition (16) may be used. Each choice will
reduce the diffusion equation to an ordinary differential
equation, which, when solved, will give the same result for
F .

▶ Let’s pick the form,

F (x , t) =
1√
t
f (ζ), ζ ≡ x√

t
. (18)
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▶ We get

Fx =
1
t

f ′; Fxx =
1

t3/2 f ′′; Ft = − 1
2t3/2 f − x

2t2 f ′, (19)

where ′ ≡ d/dζ.

▶ Plugging these into the original diffusion equation (5), we
get

− 1
2t3/2 f − x

2t2 f ′ − 1
t3/2 f ′′ = 0, (20)

which is the linear second-order ODE

f ′′ +
ζ

2
f ′ +

1
2

f = 0 (21)

with the independent variable ζ.
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▶ The ODE (21) is an “exact” equation: i.e. it is a derivative

of an ODE of lower order. Specifically,

f ′′ +
ζ

2
f ′ +

1
2

f =
d
dζ

(
f ′ +

ζ

2
f
)

= 0. (22)

▶ Integrating this equation once gives

f ′ + (ζ/2)f = A = constant (23)

and the solution of this is acquired using the integrating
factor.

▶ Review of the integrating factor: All first-order linear
inhomogeneous equations are soluble because it is always
possible to find an integrating factor which is a function of ζ
only. The integrating factor I(ζ) for

f ′ + p(ζ)f = q(ζ) (24)

is I(ζ) = exp
[∫ ζ p(ξ)dξ

]
.
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▶ Review of the integrating factor (cont’d): The usefulness of
I(ζ) is in the property

I′(ζ) = p(ζ)I(ζ). (25)

Multiplying (24) by I(ζ) gives
If ′ + pfI = If ′ + fI′ = (d/dζ)(If ) = qI.
So the solution is

f (ζ) =
B

I(ζ)
+

1
I(ζ)

∫ ζ

q(ξ)I(ξ)dξ, (26)

where B is a constant.
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▶ Going back to the similarity solution to the diffusion
equation, the integrating factor is

I(ζ) = exp

[∫ ζ ξ

2
dξ

]
= eζ2/4, (27)

where integration constant is arbitrarily set to be zero since
it doesn’t influence the final solution.

▶ Our q(ζ) is a constant A so by plugging this and (27) into
(26), we get

f = B e−ζ2/4 + A e−ζ2/4
∫ ζ

es2/4ds. (28)
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▶ Note that in the end, we are getting a solution representing

a temperature field. Thermal energy (or heat content) is
the volume integration of temperature multiplied by heat
capacity and it cannot be infinite.

H(t) ≡
∫ ∞

−∞
F (x , t)dx

=
A√

t

∫ ∞

−∞
f1

(
x√
t

)
dx +

B√
t

∫ ∞

−∞
e−x2/4tdx < ∞.

(29)

This constraint requires A = 01 and we have

F (x , t) =
B√

t
e−x2/4t , t > 0. (30)

1see Sec. 1.2 of Partial Differential Equations by Kevorkian [2000, 2nd
ed., Springer] for a complete argument.
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▶ To determine B, we turn to the fact that the

non-dimensional thermal energy is just the integral of the
non-dimensional temperature:

H(t) ≡
∫ ∞

−∞
F (x , t)dx (31)

▶ If we differentiate H(t) with respect to t and use the fact
that F (x , t) is the solution to the diffusion equation (5), we
obtain

dH
dt

=

∫ ∞

−∞
Ft(x , t)dx =

∫ ∞

−∞
[Fxx(x , t) + δ(x)δ(t)]dx , (32)

so that

dH
dt

= Fx(∞, t)− Fx(−∞, t) + δ(t) = δ(t) (33)

because temperature gradients at x = ±∞ must be zero.
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▶ From (33) we know that H(t) is the Heaviside function,

meaning for t > 0

1 =

∫ ∞

−∞
F (x , t)dx =

∫ ∞

−∞

B√
t
e−x2/4tdx . (34)

▶ We can rewrite the above equation as

1 = 2B
∫ ∞

−∞

e−x2/4t
√

4t
dx = 2B

∫ ∞

−∞
e−ξ2

dξ = 2B
√
π (35)

or
B =

1
2
√
π
. (36)

▶ Finally, we get the fundamental solution,

F (x , t) =
1

2
√
πt

e−x2/4t . (37)

▶ Recall that x and t here are actually non-dimensional
(primed) variables t ′ = t/tref and x ′ = x/L. Moreover, tref
and L were chosen such that L2/tref = κ.
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▶ Plugging expressions for F = T (x , t)/Tref , t ′ = t/tref and
x ′ = x/L into

F (x ′, t ′) =
1

2
√
πt ′

e−x ′2/4t ′ , (38)

we obtain

T (x , t) =
Tref

2
√

π(t/tref )
e
− x2

4(L2/tref )t =
Tref

√
tref

2
√
πt

e−x2/(4κt)

=
Tref L

2
√
πκt

e−x2/(4κt)

(39)
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▶ The infinite space is not so much relevant to geodynamic
problems as the semi-infinite half-space.

▶ The difference between the fundamental solution and the
solution for the semi-infinite space is that temperature
should be zero at x = 0 instead of at −∞.

▶ The way of making use of the fundamental solution for this
case is to put an “image source”.
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▶ Let’s formulate this semi-infinite space problem as follows
(again, non-dimensional, 1-D):

ut − uxx = δ(t)δ(x − ξ), 0 ≤ x < ∞, (40)
u(0, t) = 0, t > 0, (41)
u(x ,0) = 0. (42)

▶ As we’ve seen graphically, the Green’s function can be
constructed by superposing a fundamental solution for the
real source and another for the image source:

G(x , ξ, t) ≡ F (x − ξ, t)− F (x + ξ, t) (43)

where F is given in (37).
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▶ The “half-space cooling” problem in geodynamics can be

similarly formulated as

ut − uxx = 0, 0 ≤ x < ∞, 0 ≤ t , (44)
u(0, t) = 0, t > 0, (45)
u(x ,0) = f (x). (46)

▶ Noting that this problem is equivalent to

ut − uxx = δ(t)f (x), 0 ≤ x < ∞, 0 ≤ t , (47)
u(0, t) = 0, t > 0, (48)
u(x ,0) = 0. (49)

we write the solution in terms of the Green’s function

u(x , t) =
∫ ∞

0

∫ t

0
δ(τ)f (ξ)G(x , ξ, t − τ)dτdξ

=

∫ ∞

0
f (ξ)G(x , ξ, t)dξ.

(50)
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▶ When f (x) = c (constant),

u(x , t) =
c

2
√
πt

[∫ ∞

0
e−(x−ξ)2/4tdξ −

∫ ∞

0
e−(x+ξ)2/4tdξ

]
.

(51)

▶ Changing the variable of integration from ξ to
η = (x − ξ)/2

√
t in the first integral and to η = (x + ξ)/2

√
t

in the second gives

u(x , t) =
c√
π

[
−
∫ 0

x/2
√

t
e−η2

dη −
∫ −∞

0
e−η2

dη −
∫ ∞

x/2
√

t
e−η2

dη

]
.

(52)

▶ Simplifying this expression gives

u(x , t) =
2c√
π

∫ x/2
√

t

0
e−η2

dη = c erf
(

x
2
√

t

)
, (53)

where erf() is the error function.
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▶ Again, we can add back dimensions to the variables

obtaining

T (x , t) = Tref erf
(

x
2
√
κt

)
. (54)

▶ This is the solution for a temperature field that is initially
Tref but equal to 0 at x = 0 for t > 0. So, this is the
problem of instantaneous cooling of the half space.
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▶ What about the instantaneous heating? The solution is

expressed as the complementary error function:

T (x , t) = Tref

(
1 − erf

(
x

2
√
κt

))
= Tref erfc

(
x

2
√
κt

)
.

(55)
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▶ It is a trivial matter to adjust the solutions (54) and (55) for
non-zero initial or boundary temperature.

▶ In case of the instantaneous heating (Fig. 4-20 in T&S),
the initial temperature is T1 and the boundary temperature
at x = 0 is T0(> T1). Then, the “magnitude” of temperature
change Tref is equal to T0 − T1 and also the solution in (55)
is shifted by T1:

T (x , t) = (T0 − T1)erfc
(

x
2
√
κt

)
+ T1. (56)

Finally, we get Eq. 4-113 of T&S:

T − T1

T0 − T1
= erfc

(
x

2
√
κt

)
. (57)
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▶ Let’s review the
fundamental solution to the
non-dimensional 1D
diffusion equation,

F(x , t) =
Tref L

2
√
πκt

e−x2/(4κt).

▶ Note that temperature,
except at the source,
increases initially and then
decrease.

▶ At a fixed t (> 0), the
shape of the fundamental
solution is nothing but the
bell-shaped curve of the
normal or Gaussian
distribution.

▶ This hints us why the
solution to the half-space
cooling problem involves
the “error” function.



Half-space cooling model

▶ The half-space cooling solution was acquired by the
following integration:

u(x , t) =
2c√
π

∫ x/2
√

t

0
e−η2

dη.

▶ In statistics, the probability of a random variable with
normal distribution of mean 0 and variance 1/2 falling in the
rage [−η, η] is given by

1√
π

∫ η

−η
e−σ2

dσ =
2√
π

∫ η

0
e−σ2

dσ = erf(η) (58)
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▶ This probability is related to “error”. For instance, when we
ask, “what’s the error bar of those data points?” we are
actually asking the range of values measured with
(assumed) random error under a certain probability: e.g.,
1σ for 67 % probability, 2σ for 95 %, etc.

▶ Don’t get a wrong idea, though.
The connection to the normal distribution is only a
coincidence. It does NOT mean that our half-space
solution is probabilistic!
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▶ To understand the generality of the diffusion equation, let’s
take a look at an example of material diffusion.

▶ Recall that the heat transport by conduction is described
as a diffusion phenomenon because the time rate of
change of temperature is proportional to the net flux of the
heat energy AND the flux is proportional to the
temperature gradient: i.e.,

Tt ∝ ∇ · f and f ∝ ∇T . (59)



Half-space cooling model
▶ Let’s consider a series of tubes that are going to be filled

with a fluid. They are connected by a little pipe going
through the near-bottom part.

(Courtesy of Prof. W. Roger Buck, Columbia University)
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▶ If the cross-sectional area of tubes is constant, the rate of
change of fluid column’s height (h) is proportional to the
net flux of fluid in and out of the tube and the flux.

▶ Furthermore, the flux of fluid from one tube to another (f) is
proportional to the pressure gradient between them (∇p).

▶ Why? Flow rate is velocity times area. In our case, the
area is constant. So, velocity should be proportional to the
pressure gradient, which is true for flows in pipes. This is
one of the first topics we will learn in the fluid mechanics
chapter
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▶ Since the pressure at the bottom of a tube is ρfluidgh, the
pressure gradient is proportional to the gradient of the
column height (∇h).

▶ So, we have the following relationship in this setting:

ht ∝ ∇ · f and f ∝ ∇h, (60)

which leads to the conclusion that the time and spatial
variation of the column height, h(x , t), can be
described by the diffusion equation.
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▶ The instantaneous “cooling” case (1/8):

(Courtesy of Prof. W. Roger Buck, Columbia University)
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▶ The instantaneous “cooling” case (2/8):

(Courtesy of Prof. W. Roger Buck, Columbia University)
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▶ The instantaneous “cooling” case (3/8):

(Courtesy of Prof. W. Roger Buck, Columbia University)
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▶ The instantaneous “cooling” case (4/8):

(Courtesy of Prof. W. Roger Buck, Columbia University)
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▶ The instantaneous “cooling” case (5/8):

(Courtesy of Prof. W. Roger Buck, Columbia University)
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▶ The instantaneous “cooling” case (6/8):

(Courtesy of Prof. W. Roger Buck, Columbia University)
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▶ The instantaneous “cooling” case (7/8):

(Courtesy of Prof. W. Roger Buck, Columbia University)
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▶ The instantaneous “cooling” case (8/8):

(Courtesy of Prof. W. Roger Buck, Columbia University)
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▶ The steady-state case:

(Courtesy of Prof. W. Roger Buck, Columbia University)
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