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the parabolic cylinder (Weber-Hermite) equation

yﬂ' + (V + fji' — i,_xz)y — 0, (1.4.9)

and the Bessel equation
2

1
yalys(i-5)y=o (14.10)

Some properties of the solutions to these and other classical differential equations
are given in the Appendix.

1.5 INHOMOGENEOUS LINEAR EQUATIONS

Inhomogeneous linear differential equations are only slightly more comghcated
than homogeneous ones. This is because the difference of any two solutions (?f
Ly =f{x)is a solution of Ly = 0. As a result, the general solution qf Ly =f(x)is
the sum of any particular solution of Ly = f(x) and the general solution of Ly = 0.

Example 1 General solution te an inhomogeneous equation. Suppose y = xy= ?cz, and y = .x3
satisfy the second-order equation Ly = f {x). Can you find the gez;eral solution w1_thout knowing
the explicit form of L and f? The differences x — x% and x% — x* are bot}n solutions of Ly;- 0.
These functions are linearly independent, so the general solution of Ly =0is y(x-) =¢yfx~x Y+
c2(x* — x*). Hence, the general solution of Ly = f(x), which must contain two arbitrary
constants of integration, is y(x) = ¢;(x — x?) + a(x* — x*) + x-

" All first-order linear inhomogeneous equations are soh'lble because it is
always possible to find an integrating factor which is a function of x only. The
integrating factor I(x) for

¥ (%) + polx)y(x) =1 (x) (15.1)
is I{x)= exp [{* po(t) dt]. Multiplying by [ (x) gives I () (x) + po(x)y(x)(x) =
(d/dx){I(x)y(x)] = f (x)I(x). So the solution of (1.5.1) is

¢y 1

y&):;aj+iﬁajiﬂﬂﬂﬂda (152)

Example 2 First-order inhomogeneous equation. The equation y'(x} = y/(x + y)i:s not lincz.ir in y,
but is Linear in x! To demonstrate this, we simply exchange the dependent variable y with the

independent variable x:
d x(¥)+y
L )= 222
dy y
An integrating factor for this equation is I(y) = 1/y. Multiplying by I(y) gives (d/dy)x

(x/yy=1yorx(y)=yly+e,yp. _ o )
The technique of exchanging the dependent and independent va.nabl.cs is e:csc.ntxal_ for the
solution of Prob. 1.22. A generalization of this method to partial differential equations is called

3
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the hodograph transformation.
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There are several standard techniques for solving higher-order inhomoge-
neous linear equations. '

Variation of Parameters

The only new complication in solving an inhomogeneous equation if the asso-
ciated homogeneous equation is soluble is finding one particular solution. The
method of variation of parameters is a general and infallible technique for deter-
mining a particular solution. The method could be classified as a super reduction
of order.

We illustrate with a second-order equation. Let y,(x) and y,(x) be two
linearly independent solutions of the homogeneous equation Ly = 0, where
L = d*/dx? + py(x) dfdx + pofx). We seek a particular solution of Ly = f(x)
having the symmetric form

Y(x) = 1, (x}yy (x) + uy(x)p2{x). (1.5.3)

Of course, u; and u, are underdetermined so we have the freedom to impose a
constraint which simplifies subsequent equations. We choose this constraint to be

wy(e)ya{x) + up(x)y(x) = 0. (1.5.4)

Next, we differentiate (1.5.3) twice, substitute into Ly = f(x), and remember
that Ly, = Ly, = 0. Using (1.5.4) we have

(Wi lx) + ua(xlya(x) = (x). (L5.5)
The solution of the simultaneous equations {1.5.4) and {1.5.5) for u} (x) and u}(x)is
sy Ex)ya(x)
= G 1.5.6
' (X) = f(x)yl(x) ( B )
2 W(x) )

where W{x) = W[y,(x), y»(x)] is the Wronskian. Observe that the denominators

W do not vanish because y,(x) and y,{x) are assumed to be linearly independent
solutions of Ly = 0.

Integrating (1.5.6) gives the final expression for the particular solution in
(1.5.3):

yx) = = nix) Jx i%)}()f-(t—)dt + ¥2(x) Jx i%%(i)dr. (1.5.7)

)

Example 3 Variation of parameters. To solve y* — 3y" + 2y = ¢ by variation of parameters, we
first determine that two solutions of the associated homogeneous equation are y, = ¢* and
¥z = €** Next we compute the Wronskian: W(e*, ¢2¥) = €%*. Substituting into (1.5.7) gives

X x
yix)= ~—e"J- dt e*e¥eT 4 o*F J‘ dt e¥'efe™
= € € + ey + 2™,

which is the general solution to the inhomogencous differential equation.

Variation of parameters for nth-order equations is discussed in Prob. 1.15.
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Green’s Functions

There is another general method for constructing the solution to an mhomoge-
neous linear differential equation which is equivalent to variation of parameters.
This method represents the solution as an integral over a Green’s Sunction.

To define a Green’s function it is necessary to introduce the Dirac delta
function §(x — a). This function may be thought of as a mathematical idealization
of a unit impulse; it is an infinitely thin spike centered at x = a having unit area.
The § function has two defining properties. First,

§(x—a)=0, x+#a (1.5.8a)

Second, J- dx—a)dx=1 (1.5.8b)

bl -+

From these properties we have the crucial result (see Prob. 1.16) that

. r, 5l — a)f (x) dx = 1) {1.5.9)

if f(x) is continuous at a.
There are many ways to represent the § function. It may be expressed (non-
‘uniquely) as the limit of a sequence of functions:

S(x — a)= Hm Fx), (1.5.10a)
0+
0, x < a-— 1z,
where Fix)=1{1/e, a—-4c<x=<a+is
0, a+i<x;
£
—a)= Im ————ps 1.5.106
o S —a)= m ey (1:5.10)
or §(x — a)= lim (me)~ e~ ®m Ve, (1.5.10¢)
&0+ 1 L ( )
—ay= lim = e gy, 1.5.10d
or 3{x — a) LETw 5> J‘“Le dt ( )

(The notation & — 0+ means that ¢ approaches 0 through positive values only.) It
is easy to verify (see Prob. 1.17) that the formulations in (1.5.10) satisfy (1.5.8).

Alternatively, 6(x — a) may be viewed as the derivative of a discontinuous
function. If h(x — a) is the Heaviside step function defined by

0, x<a,
hix—a)= 43 x=a
1, x>a,
then (see Prob. 1.18) d(x —a)= %h(x - a). (1.5.11)

+ Technically. the & function is not really 2 function: it is a distribution (sec References).

once the solutions to the associated homogeneous equation
llustrate we solve the second-order equation

We denote two ljx%early independent solutions to
when x # g, the right side of (1.5.14) vanishes and we have
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Notice that integration is a smoothing
smoothing. For exam
function,

operation but that differentiation is u
- - - n-
ple, the Heaviside function, which is the integral of the ¢

x

h(x — a)='[ o(t — a) dt,

“~c0

has a finite jump discontinuity while the & function h

oy, St as an infinite jump disconti-

the ramp function, which is the integral of the Heaviside function,

x

r(x__a)=j_ h(t — a) dt

.-={0’ x<a,

. . X —qa, axx,
Is contmuous everywhere. ‘

Next, we define the Green’s function. The Gre

‘ ) en’s function G i
with the inhomogeneous equation Ly=f Y omsoated

(x) satisfies the differential equation
LG(x, a) = §(x — a). (1.5.12)

Once G(x, a) is known, it is easy to represent the solution to Ly = f(x) as an

integral

yx)=] dase)G(x, a) | (1.5.13)
To verify that ¥(x) in (1.5.13) solves Ly = f, we differentiate under the integral:

Ly(x)= L J'—w da f(a)G(x, a)
= J.:o da f (a)LG(x, a)

= Ji: da f(a)o(x — a}
=f(x),

where we have used (1.5.12) and (1.5.9) in turn.

The only remaining problem is to solve (1.5.12) for G(x, a). But this is easy
Ly = 0 are known. To

2

d
LG(x, a) = Pl pi(x)d—ig +polx) | Gx, @) = 6(x —a).  (1.5.14)
Ly = 0by y,{x)and y,(x). Then,

Glx, @)= A1 y1(x) + A,32(x), x<aq
G(x. a) = By y,(x) + B, y,(x). x> a



18 FUNDAMENTALS

In order to relate the solution for G(x, a) for x < a to the solution for x > a,
we argue that G(x, @) is continuous at x = g and that 8G/dx has a finite jump
discontinuity of magnitude 1 at x = a. To show this, we ob.serve that the most
singular term on the left side of the Green’s function equation (1.5.14) must be
82G/éx* because differentiation is an unsmoothing operation; if G or 8G/0x haczi!
an infinite jump discontinuity at x = a like that of a § function, then azg/ax
would be even more singular than a § function and (1.5.14) could not be satisfied.
Thus, (1.5.14) implies that §*G/éx* — §(x — a) must be less singular than a é
function at x = a. Therefore, integrating 82G/éx* — §(x — a) from - co to x gives
a function which is continuous even at x = a: §G/dx — h(x — a) is continuous
everywhere. Hence the discontinuity in 8G/dx at x = a is the same as that of
the Heaviside function h{x — a):

i [@_c_;_ _ 3G

| x =g+ ax

- = 1. (1.5.15)
0+

Finally, since ¢G/dx has only a finite jump discontinuity, its indefinite integral
G(x, @) must be continuous at x = a.
Continuity of G{x, a} at x = a gives the condition

Ayyi(a) + Azya(a) = Biyi(a) + Bayala)
Also, {1.5.15) requires that
Byyi(a) + Bayala) — Aryi(a) — Azya(a) = 1.
Using these relations and solving for B; — 4; and B; — A,, we obtain

x=a—E

. - 5.16
Bi= A= @ el (1:516)
B, — A, =218 __ (15.17)

Wiyi(a), yaa)]’

Observe the strong parallel between these equations and (1.5.6). . _
We have now completed the solution of the Green’s fluncuon equation
(1.5.14). However, A, and A, are still arbitrary because G(x, a)is only determined

by (1.5.14) up to a solution of the homogeneous equation. Choosing 4, = A, =0

and using {1.5.16) and (1.5.17) to determine B, and B, we obtain

= ya(a)y, (x) + yilalya(x) x=a,
G(x, a) = Wiyi(a), y2(a)] ’ {1.5.18)

0, x <a

Substituting this formula for G(x, a) into (1.5.13) reproduces exactly the variation
of parameters result in (1.5.7).

The Green’s function approach has a distinct advantage over the 1_'nethod of
variation of parameters when it is necessary to solve a differential equation Ly= !
where L and the boundary conditions are fixed but f ranges over a wide variety of
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functions. (Why?) The analysis is particularly simple when the boundary con-
ditions are homogeneous.

Example 4 Solution of a boundary-value problem by Green's functions. The Green’s function for
. the boundary-value problem " = f{x)[y(0) = 0, (1) = 0] is defined by the equations

{B*G/oxt)(x a) = d(x —a), G{0,a)=0, (8G/8x)(1, a) =0.

Notice that we have chosen G to satisfy the same homogeneous boundary conditions as y.
The solution for G{x, a) is
x, x<a

G{x, a) = ca  xza

when 0 <a<1l For any f(x). y{x) can then be represented as y(x)= {5 G(x, a)f (a) da
(0 = x < 1) Note that we do not integrate from —co to + o0, Why?

Example 5 Solution of a boundary-value problem by Green's fnctions. The Green’s functior for
the boundary-value problem y” — y = f (x){¥( £ 0o) = 0] is defined by the equations 82G/dx? —
G(x, a) == 3(x ~ a), G(k oo, a) == 0. The solution for G{x,a) is G(x, a) = —ie~!**%. Thus, for
any f(x), yx) = =4 [2, e7** f(a) da.

Reduction of QOrder

For the sake of completeness, it is important to state that reduction of order
reduces the order of inhomogeneous as well as homogeneous equations. Thus,

since all first-order linear equations are soluble, reduction of order is especially
useful for second-order linear equations.

Example 6 Reduction of order for an inhomogeneous equation. One solution of the homogeneous
equation a(x)y” + xy’ —y =0 is y,(x) = x. Therefore, to solve the inhomogeneous equation
a(x}y” + xy" — y = f(x) by reduction of order, we seck a solution of the form y(x) == yofxu(x) =
xu(x). Substituting gives a first-order equation for '(x) which is easy to solve:
xa{xu” + [2a(x) + xZu’ = f(x).

Methed of Undetermined Coefficients

There is another technique for determining a particular solution to Ly = f(x)
called the method of undetermined coefficients, which we discuss briefly. This
method is really little more than organized guesswork, but when it works it is
faster than variation of parameters. Its application is usually limited to constant-
coefficient equations where f(x} is an additive or multiplicative combination of ¢*,

sin x, cos x, and polynomials in x, or equidimensional equations where f (x)is a
polynomial in x.

Example 7 Method of undetermined coefficients.

{a) To solve y” + y=¢*sin x we guess a particular solutien of the form y = ae” sin x +
be* cos x and determine the “undetermined cocfficients™ a and b by substituting into the
differential equation. The results are a = —4 and b= —2.



