
Rayleigh-Taylor Instability

▶ Experiments with saline water
http://youtu.be/NI85oC-3mJ0

▶ Stability by surface tension
https://youtu.be/yutbmcO5g2o?si=
aEZXm8LCBB5LSPxv&t=1076
(17 m 53 s - 19 m 48 s)

http://youtu.be/NI85oC-3mJ0
https://youtu.be/yutbmcO5g2o?si=aEZXm8LCBB5LSPxv&t=1076
https://youtu.be/yutbmcO5g2o?si=aEZXm8LCBB5LSPxv&t=1076


Convection analysis: Three-part approach

▶ Stability analysis
▶ We’d like to tell whether a fluid layer is going to start

convecting or not.

▶ We will introduce an analytical technique called linear
stability analysis.

▶ Sec. 6. 19 in T&S (3rd ed.)

▶ Transient growth of boundary layers. Sec. 6.20.

▶ Steady-state boundary-layer theory. Sec. 6.21.



Stability Analysis: Basic Concepts I

▶ We will learn on what ground the mantle convection
was first proposed and considered to be plausible.

▶ In spite of the complexity of the governing equations
describing the conservation of mass, momentum and
energy, sometimes very simple flow patterns appear (e.g.,
laminar channel flows).

▶ These patterns, however, can be realized only for certain
ranges of the parameters characterizing them (e.g.,
transition to a turbulent flow as Re increases.)

▶ Outside these ranges, simple flow patterns cannot be
realized because of their inherent instability, i.e. in their
inability to sustain themselves against small perturbations
to which any physical system is subject.



Stability Analysis: Basic Concepts II
▶ The problems of hydrodynamic stability are concerned

about the transition from the stable to the unstable patterns
of permissible flows.

▶ We will closely follow Chandrasekha’s
treatise,“Hydrodynamic and Hydromagnetic Stability”
(Oxford University Press, 1961 or Dover, 1981).

▶ The key question addressing the concept of stability: If a
system is disturbed, will the disturbance gradually die
down, or will the disturbance grow in amplitude in
such a way that the system progressively departs from
the initial state and never reverts to it?

▶ In the former case, we say the system is stable w.r.t. the
particular disturbance; and in the latter case, we say the
system is unstable.
▶ Watch 0m 30s-1m 55s of

https://www.youtube.com/watch?v=xe-f4gokRBs

 https://www.youtube.com/watch?v=xe-f4gokRBs


Stability Analysis: Basic Concepts III

▶ Watch 0-5m 15s, 19m 49s-22m 50s: https:
//www.youtube.com/watch?v=yutbmcO5g2o&
index=19&list=PL0EC6527BE871ABA3

▶ Kelvin-Helmholtz instability:
https://www.youtube.com/watch?v=UbAfvcaYr00

▶ In the space of parameters, all initial conditions can be
classified as either stable or unstable according to the
criterion stated above. Then, it will be possible to find in
the same parameter space the locus that separates the
two states.

▶ The locus defines the states of marginal stability of the
system. By this definition, a marginal state is a state of
neutral stability (i.e., neither stable nor unstable).

▶ Finding marginal states is the prime objective of the
hydrodynamic stability analysis1.

https://www.youtube.com/watch?v=yutbmcO5g2o&index=19&list=PL0EC6527BE871ABA3
https://www.youtube.com/watch?v=yutbmcO5g2o&index=19&list=PL0EC6527BE871ABA3
https://www.youtube.com/watch?v=yutbmcO5g2o&index=19&list=PL0EC6527BE871ABA3
https://www.youtube.com/watch?v=UbAfvcaYr00


Stability Analysis: Basic Concepts IV

▶ It is convenient to assume all the parameters are fixed
except one, which is continuously varied. When the
particular parameter being varied takes a certain critical
value, the system will pass from a stable to an unstable
state.

▶ We say that instability sets in at this value of the chosen
parameter.

▶ The marginal stability can be further divided according to
the growth or decay of a given perturbation is monotonic or
oscillating. The latter case is called “overstability”. For
further details, read Sec. 2 of Chandrasekhar’s book.

1The term “stability analysis” is also used in the study of a system of
ODEs. There is some conceptual similarity but they greatly differ in practice.



Stability Analysis: Procedure

The general procedure of a stability problem is as follows:
1. Assume an initial flow representing a stationary state of the

system.

2. Linearize the governing equation. In other words, rewrite
equations in terms of infinitesimal perturbations to the
physical variables. This step is called “linearization”
because we neglect all the products and powers (higher
than the first) of the increments and retain only the terms
which are linear in the increments.

3. The solution you get from the linearized equations will tell
you the perturbation would grow or get damped.



Stability Analysis: Procedure cont’d
▶ Since the stability is determined with respect to all the

possible perturbations, we need a complete
representation of them.

▶ For instance, if we represent the perturbation with an
amplitude function, A, a Fourier series or spherical
harmonic representation of A would be appropriate:

A(r, t) =
∫

Ak(r, t)dk, (1)

where r is a position vector (e.g., (x , y , z)), k is a
wavenumber vector (e.g., (kx , ky , kz))

▶ We then separate the dependence on time by seeking
solutions of the form

Ak(r, t) = Ak(r)epkt , (2)

where pk is a constant to be determined.



Stability Analysis: Procedure cont’d

▶ In general, the characteristic values for pk will be complex:

pk = ξk + iζk (3)

▶ The imaginary part will correspond to the oscillatory
change in the amplitude of perturbations while the sign of
real part will determine whether the perturbation will grow
or decay.

▶ As we’ve seen in many previous examples (e.g., Sec. 6.12
Diapirism and Sec. 6.13 Folding in T&S), the growth rate,
pk, is a combination of parameters (cf. viscous
relaxation time, Reynolds number, etc).

▶ Therefore, the marginal stability is defined as the envelope
of loci pk(X1,X2, . . .) = 0, where Xi is the i-th parameter.



Dimensionless Numbers
▶ Non-dimensionalizing the governing equations typically

yields non-dimensional numbers and their physical
meanings become clear during the process.

▶ Reynolds Number. Non-dimensionalize the Navier-Stokes
equation for incompressible, constant-viscosity Newtonian
fluid in terms of the following non-dimensional variables:

v′ = v/V , p′ = p/(ρV 2), f′ = f D/(ρV 2),

∂/∂t ′ = (D/V )∂/∂t , ∇′ = D∇,

where D and V are the characteristic length and speed.
Then, we get

Dv′

Dt ′
= −∇′

p′ +
µ

ρDV
∇′2v′ + f′

= −∇′
p′ +

1
Re

∇′2v′ + f′
(4)



Dimensionless Numbers
▶ Rayleigh Number (Ra). Non-dimensionalize the Stokes

equation,

0 = −∇p + µ∇2v + ρgeg , (5)

in terms of the following non-dimensional variables2:

p′ = p/(κµ/D2),

v′ = v/(κ/D),

ρ′ = ρ/ρ0, g′ = g/g0, µ′ = µ/µ0.

By dividing the equation by the common factor from the
first two terms, κµ/D3, we get

0 = −∇′p′ + µ′∇′2v′ +
ρ0g0D3

κµ
ρ
′
g′eg

= −∇′p′ + µ′∇′2v′ + Ra ρ′g′eg

(6)

2Unnlike in the derivation of the Reynolds number, all the time dimension
is provided by thermal diffusivity, κ [m2/s]



Dimensionless Numbers

▶ Prandtl Number (Pr). Non-dimensionalize the non-steady
Stokes equation

ρ
Dv
Dt

= −∇p + µ∇2v + ρgeg , (7)

in terms of the previous non-dimensional variables.
As before, dividing the equation by κµ/D3, we get

−∇′p′ + µ′∇′2v′ + Ra ρ′g′eg = ρ0
κ

D
κ

D2
D3

κµ
ρ′

D′v′

D′t ′

=
κ

µ/ρ0
ρ′

D′v′

D′t ′
=
κ

ν
ρ′

D′v′

D′t ′
=

1
Pr
ρ′

D′v′

D′t ′
.

(8)

Pr = ν/κ and when Pr is infinite, i.e., ν is big and κ is small,
we can ignore the inertial term as a whole and the Stokes
equation (5) is retrieved.



Dimensionless Numbers
▶ Péclet Number (Pe). Non-dimensionalize the heat

advection-diffusion euqation,

∂T
∂t

+ v · ∇T = κ∇2T , (9)

in terms of the following non-dimensional variables:
▶ T ′ = T/T0, v′ = v/V , κ′ = κ/κ0,

▶ ∇′ = D∇, ∂/∂t ′ = (D2/κ0)∂/∂t .
Dividing the equation by T0κ0/D2, we get

∂T ′

∂t ′
+

VT0

D
D2

T0κ0
v′ · ∇′T ′ = κ′∇′2T ′,

where the coefficient of the advection term becomes Pe =
VD/κ0. So, the non-dimensional heat equation becomes

∂T ′

∂t ′
+ Pe v′ · ∇′T ′ = κ′∇′2T ′. (10)

▶ Try to infer the physical meaning of Pe from this equation.



Dimensionless Numbers

▶ Nussel Number (Nu) is defined as

Nu ≡ Convective heat flux
Conductive heat flux

. (11)

▶ Apparently, there is no corresponding non-dimensional
governing equation.

▶ However, the physical meaning is clear from the definition
itself.



Thermal Convection: Governing Equations
▶ We have studied heat transfer by diffusion and fluid motion

separately or together only in the pipe flow case.

▶ Convection is a way of transferring heat energy in which
the amount of heat carried by a moving medium is more
significant than by diffusion. So, to study convection, we
need to consider both less restricted fluid motions and
conductive heat transfer.

▶ The governing equations are the Stokes equation (5)

0 = −∇p + µ∇2v + ρgeg ,

and the heat advection-diffusion equation (9)

∂T
∂t

+ v · ∇T = κ∇2T .

for no heat sources/sinks, zero pV work, zero shear
heating and constant material properties.



Thermal Convection: Boussinesq Approximation

▶ Boussinesq approximaton: Density change due to thermal
expansion is assumed to contribute only to the buoyancy
force.

ρ = ρ0 + ρ′ = ρ0 − αvρ0(T − T0), (12)

where ρ0 is the reference density at T = T0.

▶ All the other terms in (5) and (9) are free from the effects of
density change.

▶ Beyond the linear stability analysis, temperature
dependence of viscosity should be considered and it
requires a numerical approach to solve the governing
equations.

▶ The Boussinesq approximation might be too simple for the
Earth’s mantle. Research on this compressible mantle
convection has started only recently.



Thermal Convection: Linearization
▶ Let’s consider an infinite horizontal layer of fluid of

thickness b (see Fig. 6-38 of T&S). The bottom
temperature (T1) is higher than the top temperature (T0).

▶ Further assume that initially, there is no motions

v = 0, (13)

and the temperature distribution is in a steady state. Then,
Eq. (9) becomes

∇2T =
∂2T
∂y2 = 0, (14)

From the boundary conditions assumed earlier, the
temperature profile becomes linear:

Tc =
T1 + T0

2
+

T1 − T0

b
y , (15)

where the subscript c means that this is a conductive
profile.



Thermal Convection: Linearization
▶ As for the momentum equation, only the y component is

non-trivial:

0 = −∂p
∂y

+ ρg = −∂p
∂y

+ ρ0g(1 − αv (Tc(y)− T0)), (16)

which can be integrated to get an expression for p, which is
denoted as pc because it is associated with Tc .

▶ Equations (13), (15) and (16) completely describes the
initial state.

▶ Now, let the initial state be slightly perturbed such that

T ′ = T − Tc , (17)

where T is the perturbed temperature field and T ′ is the
added small perturbation.

▶ This perturbation will generate velocity field
v′ = (u′(x , y), v ′(x , y)) and dynamic pressure P ′(x , y).



Thermal Convection: Linearization

▶ The perturbed variables, v = 0 + v′, p = pc + P ′ and
T = Tc + T ′, should still satisfy the governing equations.

▶ Heat equation:

∂(Tc + T ′)

∂t
+ v′ · ∇(Tc + T ′) = κ∇2(Tc + T ′). (18)

Discarding any term that is quadratic or higher-order in
terms of the perturbed variables, we get

∂T ′

∂t
+ v ′T1 − T0

b
= κ∇2T ′, (19)

where v ′ is the y component of v′. This is equal to Eq.
6-302 of T&S.



Thermal Convection: Linearization

▶ Momentum equation:

0 = −∂(pc + P ′)

∂x
+ µ

(
∂2u′

∂x2 +
∂2u′

∂y2

)
,

0 = −∂(pc + P ′)

∂y
+ µ

(
∂2v ′

∂x2 +
∂2v ′

∂y2

)
+ ρ0g(1 − αv ((Tc(y) + T ′)− T0))

From the fact that pc is a function of y only and from Eq.
(16),

0 = −∂P ′

∂x
+ µ

(
∂2u′

∂x2 +
∂2u′

∂y2

)
, (20)

0 = −∂P ′

∂y
− ρ0gαv T ′ + µ

(
∂2v ′

∂x2 +
∂2v ′

∂y2

)
. (21)



Thermal Convection: Linearization

▶ Continuity equation:

∂u′

∂x
+
∂v ′

∂y
= 0. (22)

▶ Equations (19), (20), (21) and (22) completes the set of
equations that describe the disturbed motion of the fluid.
They are said to be linearized.



Thermal Convection: Boundary Conditions
▶ Impermeable and isothermal conditions:

T ′ = v ′ = 0 on y = ±b
2
. (23)

▶ Possible conditions for horizontal velocity:
▶ No-slip condition

u = 0 on y = ±b
2
. (24)

▶ Free-slip condition (≡ zero horizontal traction)

τxy = µ

(
∂u′

∂y
+
∂v ′

∂x

)
= 0 on y = ±b

2
. (25)

where τxy is a component of deviatoric stress.
This condition allows a simpler solution and is further
simplified to

∂u′

∂y
= 0 on y = ±b

2
, (26)

since v ′ = 0 for any x and thus ∂v ′/∂x = 0.



Thermal Convection: Stability Analysis
▶ We can consolidate the momentum equations into a

biharmonic equation of a single scalar variable using the
stream function:

0 = µ

(
∂4ψ′

∂x4 + 2
∂4ψ′

∂x2∂y2 +
∂4ψ′

∂y4

)
− ρ0gαv

∂T ′

∂x
. (27)

Here, it should be obvious that the linearized equations of
the velocity perturbations becomes the linearized equation
of the perturbed stream function.

▶ The perturbations are assumed to take the following forms:

ψ′ = ψ′
0 cos

πy
b

sin

(
2πx
λ

)
eα′t , (28)

T ′ = T ′
0 cos

πy
b

sin

(
2πx
λ

)
eα′t . (29)

Note that these forms automatically satisfy the boundary3

conditions.
3no-slip or free-slip?



Thermal Convection: Stability Analysis
▶ Plugging in (28) and (29) into the governing equations, we

get (
α′ +

κπ2

b2 +
κ4π2

λ2

)
T ′

0 = −(T1 − T0)2π
λb

ψ′
0, (30)

µ

(
4π2

λ2 +
π2

b2

)2

ψ′
0 = −2π

λ
ρ0gαv T ′

0. (31)

▶ Solving the above system of equation for the growth rate,
α′,

α′ =
κ

b2

[
Ra

k2

(k2 + π2)2 − (π2 + k2)

]
, (32)

where the Rayleigh number Ra is defined as

Ra =
ρ0gαv (T1 − T0)b3

µκ
(33)

and k is a dimensionless wave number, 2πb/λ.



Thermal Convection: Stability Analysis

▶ The marginal (or neutral) state, in which the perturbation
does not grow nor decay spontaneously, corresponds to
α′ = 0. In this case,

Ra =
(k2 + π2)3

k2 , (34)

and this value is called the critical Rayleigh number,
Racr .

▶ If Ra > Racr , α′ > 0, which means the perturbation will
exponentially grow in time; if Ra < Racr , α′ < 0 and the
perturbation will die down.

▶ As we discussed earlier in a general setting, knowing the
marginal state is sufficient for understanding the stability of
a flow system. That’s why Racr as well as Ra are important
for convection.



Thermal Convection: Stability Analysis

▶ Fig. 6-39 of T&S is the Racr − k plot.

▶ The smallest possible Racr and the corresponding k can
be found from ∂Racr/∂k = 0 and they are 657.5 and
π/

√
2, respectively.

▶ Since k = 2πb/λ, the wavelength λ is 2
√

2b.

▶ For the no-slip condition, Racr = 1707.8 and λ = 2.016b.

▶ A situation closer to the Earth mantle: Cooled from the top,
internal heating, no heat flux through the bottom

RaH =
αvρ

2gHb2

kµκ
, (35)

where k is the heat conductivity, not wave number!
▶ No-slip conditions: Racr = 2772 and λ = (2π/2.63)b.

▶ Free-slip condition Racr = 867.8 and λ = (2π/1.79)b.



Thermal Convection: Stability Analysis
▶ For the Earth, we take

▶ µ = 1021 Pa·s,

▶ k = 4 W/m/K,

▶ κ = 10−6 m2/s,

▶ αv = 3×10−5 /K

▶ g = 10 m/s2,

▶ ρ0 = 4000 kg/m3,

▶ H = 9×10−12 W/kg.

Then for the upper mantle convection, b = 700 km and
RaH = 2 × 106; for the whole mantle convection, b = 2880
km and RaH = 2 × 109.

▶ In either case, the Earth mantle is supposed to be
unstable. Based on this, Arthus Holmes argued in 1931
that the thermal convection in the mantle should be
vigorous enough to drive continental drift.



Convection Initiation in Everyday Materials I
Properties Water Vegetable oil Corn syrup
k (W/m/K) 0.6 0.2 0.3
cp (J/Kg/K) 4200 2200 2700
ρ (kg/m3) 1000 900 1400
κ (m2/s)
α (K−1) 2×10−4 7×10−4 5.6×10−4

η (Pa·s) 0.001 0.03 3
∆T (K) 100 100 100
h (m) 0.01 0.01 0.01

Goals:
▶ Know the meaning of and how to compute the Rayleigh

number.

▶ Understand the condition for convection initiation:
Ra > Rac
▶ For a laterally infinite fluid layer that is heated at the bottom

and cooled at the top, Rac is ∼600 to 103.

▶ Be able to compute Ra for the Earth’s mantle, memorize its
order of magnitude and use it as an argument for the
mantle convection.
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