
Fluid Mechanics: Governing Equations
▶ The local and spatial form of the momentum balance

equation is

∇ · σ + ρ b = ρ
Dv
Dt

. (1)

For review, see the lecture notes on continuum kinematics
or watch and read the module “Eulerian Lagrangian
Description” on
http://web.mit.edu/hml/ncfmf.html.

▶ This equation should always hold as long as Newton’s 2nd
law of motion is valid no matter what material we are
dealing with.

▶ What distinguishes solid from fluid is the “behavior” or
response to loading, which is described macroscopically
by a constitutive relation.

▶ The boundary between solid-like and fluid-like behaviors is
often blurry but one way of defining fluid is to see whether
a material deforms indefinitely for given shear stress.

http://web.mit.edu/hml/ncfmf.html
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▶ If a material subjected to a fixed value of shear stress
continues to deform without stopping, i.e. “flows”, the
material is treated as a fluid.

▶ Since the amount of deformation is indefinite, a proper way
of measuring deformation of fluid is to measure the rate of
deformation.

▶ The rate of deformation is quantified by the strain rate
tensor:

ε̇ =
1
2

[
∇v + (∇v)T

]
=

1
2

[
∂v
∂x

+

(
∂v
∂x

)T
]
, (2)

where v is the spatial velocity and x is the spatial
coordinates.



Fluid Mechanics: Governing Equations
▶ In the matrix form, the strain rate tensor looks like
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▶ In the indicial notation,

ε̇ij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
(3)

▶ Next, we are going to make two assumptions: the flow is
incompressible and Newtonian.

▶ An incompressible flow has zero volumetric strain rate:

ė = tr(ε̇) = (ε11 + ε22 + ε33) =

(
∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3

)
= 0.

(4)
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▶ The Cauchy stress tensor can always be decomposed into

pressure and deviatoric stress terms.

σ = −p I + τ , (5)

where p = −tr(σ)/dim and the minus sign implies that
compressional pressure is positive.

▶ Likewise, the strain rate tensor can be decomposed into
volumetric and deviatoric components.

ε̇ = ė + ϵ̇, (6)

▶ A Newtonian flow has linear relationship between
deviatoric strain rate and stress:

τ = 2µϵ̇ (7)

where µ is called (Newtonian) viscosity.
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▶ The full constitutive relation for the incompressible

Newtonian fluid becomes

σ = −p I + τ

= −p I + 2µϵ̇
(8)

▶ In the indicial notation,

σij = −p δij + µ

(
∂vi

∂xj
+

∂vj

∂xi

)
(9)

▶ Note that zero volumetric strain rate does not mean zero
pressure in incompressible fluids.

▶ Let’s rewrite the momentum balance equation (1) in terms
of pressure and deviatoric stress to get the Navier-Stokes
equation:

ρ
Dv
Dt

= ∇ · σ + ρ b = ∇ · (−p I + τ ) + ρ b

= −∇p +∇ · τ + ρ b.
(10)
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▶ For the Newtonian fluid,

ρ
Dv
Dt

= −∇p +∇ · (2µϵ̇) + ρ b. (11)

▶ The notorious difficulty with solving the Navier-Stokes
equation partly originates from the non-linear advection
term involved in the material derivative:

Dv
Dt

=
∂v
∂t

+ v · ∇v. (12)

▶ However, for steady-state flows (∂v/∂t = 0) with very low
speed and velocity gradient, the whole left hand side of
(11) can be ignored. Creeping flows of rocks satisfy this
condition.
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▶ So, the Navier-Stokes equation for the steady (∂v/∂t = 0),

smooth (i.e., |∇v| ≪ 1) and slow (|v| ≪ 1) Newtonian fluid
becomes

0 = −∇p +∇ · (2µϵ̇) + ρ b. (13)

▶ In the indicial notation,

0 = −p,i +

[
µ

(
∂vi

∂xj
+

∂vj

∂xi

)]
, j
+ ρ bi . (14)

where (),i denotes partial derivative with respect to xi with
i=1,2,3, and the indicial notation of strain rate (3) is also
used.

▶ If viscosity (µ) is constant,

0 = −p,i + µ

(
∂vi

∂xj
+

∂vj

∂xi

)
, j
+ ρ bi . (15)
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▶ The pressure p can be decomposed into hydrostatic
pressure (e.g., ρgx2) and dynamic pressure (P):

p = ρgx2 + P. (16)

▶ If we further assume that the body force is solely due to
gravity, then the gradient of the hydrostatic pressure and
the body force terms cancel out each other.

−∂ρgx2

∂x2
+ ρg = 0. (17)

▶ Then, we have only dynamic pressure term left:

0 = −P,i + µ

(
∂vi

∂xj
+

∂vj

∂xi

)
, j
. (18)
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▶ In a 2D case, denoting x1 and x2 as x and y , v1 and v2 as
u and v , respectively, we can write the above equation as
follows:
for i = 1:
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∂x
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∂x
+ 2µ

∂2u
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∂2u
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∂2v
∂x∂y

)
.

(19)

for i = 2:
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∂y
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∂

∂x
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∂v
∂x

+
∂u
∂y

)
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∂
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)
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∂y2 .

(20)
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▶ The incompressibility condition for 2D becomes

∂u
∂x

+
∂v
∂y

= 0 (21)

▶ By differentiating this with respect to x , we get

∂2v
∂x∂y

= −∂2u
∂x2 . (22)

Likewise, with respect to y ,

∂2u
∂x∂y

= −∂2v
∂y2 . (23)

▶ Simplifying the 2D equation with these identities, we get

0 = −∂P
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
0 = −∂P

∂y
+ µ
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∂2v
∂x2 +

∂2v
∂y2

)
.

(24)
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▶ Equations in (24) are the governing equations for the
motion of a steady, smooth, slow, Newtonian fluid in 2D
and the same with (6-67) and (6-68) in T&S.

▶ In 1D,

0 = −dP
dx

+ µ
d2u
dx2 . (25)

This is the same with (6-10) in T&S.

▶ The first half of the fluid mechanics chapter is just a
collection of applications of these equations. Note that 1D
equation is an ODE, which can be solved very easily.


