Fluid Mechanics: Governing Equations
» The local and spatial form of the momentum balance
equation is
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For review, see the lecture notes on continuum kinematics
or watch and read the module “Eulerian Lagrangian
Description” on
http://web.mit.edu/hml/ncfmf.html.

» This equation should always hold as long as Newton’s 2nd
law of motion is valid no matter what material we are
dealing with.

» What distinguishes solid from fluid is the “behavior” or
response to loading, which is described macroscopically
by a constitutive relation.

» The boundary between solid-like and fluid-like behaviors is
often blurry but one way of defining fluid is to see whether
a material deforms indefinitely for given shear stress.


http://web.mit.edu/hml/ncfmf.html
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» If a material subjected to a fixed value of shear stress
continues to deform without stopping, i.e. “flows”, the
material is treated as a fluid.

» Since the amount of deformation is indefinite, a proper way
of measuring deformation of fluid is to measure the rate of
deformation.

» The rate of deformation is quantified by the strain rate

tensor:
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where v is the spatial velocity and x is the spatial
coordinates.

€ =

N —



Fluid Mechanics: Governing Equations
» In the matrix form, the strain rate tensor looks like
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» |n the indicial notation,
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> Next, we are going to make two assumptions: the flow is

incompressible and Newtonian.

» An incompressible flow has zero volumetric strain rate:
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» The Cauchy stress tensor can always be decomposed into
pressure and deviatoric stress terms.

o=-pl+r, (5)

where p = —tr(e)/dim and the minus sign implies that
compressional pressure is positive.

» Likewise, the strain rate tensor can be decomposed into
volumetric and deviatoric components.

€ =e+¢, (6)

> A Newtonian flow has linear relationship between
deviatoric strain rate and stress:

T = 2Ué€ (7)

where 1 is called (Newtonian) viscosity.
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» The full constitutive relation for the incompressible
Newtonian fluid becomes
o=—-pl+r
= —pl+2ué

» |n the indicial notation,
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» Note that zero volumetric strain rate does not mean zero
pressure in incompressible fluids.

> Let’s rewrite the momentum balance equation (1) in terms
of pressure and deviatoric stress to get the Navier-Stokes
equation:
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» For the Newtonian fluid,
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» The notorious difficulty with solving the Navier-Stokes
equation partly originates from the non-linear advection
term involved in the material derivative:
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» However, for steady-state flows (0v/0t = 0) with very low
speed and velocity gradient, the whole left hand side of
(11) can be ignored. Creeping flows of rocks satisfy this
condition.
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» So, the Navier-Stokes equation for the steady (0v/0t = 0),
smooth (i.e., |[Vv| <« 1) and slow (|v| < 1) Newtonian fluid

becomes
0=-Vp+V-(2ué)+pb. (13)
» |n the indicial notation,
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where () ; denotes partial derivative with respect to x; with
i=1,2,3, and the indicial notation of strain rate (3) is also
used.

» If viscosity (u) is constant,
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» The pressure p can be decomposed into hydrostatic
pressure (e.g., pgxo) and dynamic pressure (P):

p = pgxs + P. (16)

> If we further assume that the body force is solely due to
gravity, then the gradient of the hydrostatic pressure and
the body force terms cancel out each other.
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» Then, we have only dynamic pressure term left:
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» In a 2D case, denoting x; and x» as x and y, v; and v» as
u and v, respectively, we can write the above equation as
follows:
fori=1:
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» The incompressibility condition for 2D becomes
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» By differentiating this with respect to x, we get
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Likewise, with respect to y,
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» Simplifying the 2D equation with these identities, we get
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» Equations in (24) are the governing equations for the
motion of a steady, smooth, slow, Newtonian fluid in 2D
and the same with (6-67) and (6-68) in T&S.

» In 1D,
P du
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This is the same with (6-10) in T&S.
» The first half of the fluid mechanics chapter is just a

collection of applications of these equations. Note that 1D
equation is an ODE, which can be solved very easily.
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