Pipe Flow or Poiseuille (/pwazé:i/) Flow |

» We derived the momentum balance equation for flows that

are
> in the steady state (0v/0t = 0),

> little varying in the flow direction (|v - Vv| = 0),
» incompressible (V - v = 0),
> Newtonian (7 = 2u €)

when gravity is the only body force. In 2D:
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Can you guess the form of the equations in 3D?



Pipe Flow or Poiseuille (/pwazé:i/) Flow I

» Let’s consider some simplest possible cases: 1-D channel
flows.

» Couette flow.
» Pressure head-driven flow.

» For a flow in a perfectly circular and straight pipe, the
momentum balance equation also becomes
one-dimensional.

» The given geometry suggests the cylindrical coordinate
system.

» v, and v, are uniformly zero. Also, most of the spatial
derivatives are zero but dvy/0r is not, where x axis
coincides with the central axis of the pipe.



Pipe Flow or Poiseuille (/pwazé:i/) Flow Il

» Considering the above conditions, we end up with only the
x component in the cylindrical momentum balance

equation:
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» Integrating (3) over r once, we get
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where A is an integration constant.

» Integrating one more time after dividing both sides by r,
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Pipe Flow or Poiseuille (/pwazé:i/) Flow IV
» Since vy should be finite at r = 0, A must be zero. Also we
can compute Bfrom vy =0atr = R.

vy = 4111‘;’5 (r2 — R2> . (4)

» The maximum velocity (Unax) and the volumetric flow rate
(Q), which is the total volume of fluid passing a cross
section per unit time, are:
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» By dividing Q with the area (7R?), we get the mean
velocity,

_ R?dP 1

U=—g——F= max - (7)



Laminar vs. Turbulent Flow |

» Watch 6 m30s- 11 m 40 s of this movie! http://www.
youtube.com/watch?v=1_oyqLOgwnI&start=390&
feature=share&list=PLOEC6527BE871ABA3.

» Behaviors of a high viscosity and low velocity flow are
fundamentally different (not just in speed!) from those of a
low viscosity and high velocity flow: Collectively, the former
are said to be laminar while the latter turbulent.

» The term laminar means “layered” because in laminar
flows, a “layer” of fluid corresponding to a certain velocity in
its parabolic profile never crosses another layer of different
velocity.

» Turbulent flows are, in contrast, characterized by vigorous
“mixing” within the entire fluid layer. A turbulent flow
becomes unsteady with random eddies.


http://www.youtube.com/watch?v=1_oyqLOqwnI&start=390&feature=share&list=PL0EC6527BE871ABA3
http://www.youtube.com/watch?v=1_oyqLOqwnI&start=390&feature=share&list=PL0EC6527BE871ABA3
http://www.youtube.com/watch?v=1_oyqLOqwnI&start=390&feature=share&list=PL0EC6527BE871ABA3

Laminar vs. Turbulent Flow Il

» Reynolds number is defined as

vL vL
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Re

where v and L are the velocity and length scale and nu is
the kinematic viscosity (not the Poisson’s ratio!).

> In our Poiseuille flow setting,

where D = 2R.

» Transition from a laminar to a turbulent flow is only
empirically known to occur at Re ~ 2200 in case of a pipe
flow.



Laminar vs. Turbulent Flow Il

> |t is convenient to define the frictional factor (equivalent
to the non-dimensional pressure gradient) for explaining
another difference between laminar and turbulent flows.

» The frictional factor (f) is involved in the Darcy-Weisbach
equation that describes the pressure drop in a pipe flow:

AP=—f_2 (10)

where D is the diameter of the pipe, equal to 2R.

> In case the pressure gradient is constant so that uniformly
equal to AP/L, we can rearrange this equation to
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Laminar vs. Turbulent Flow IV

» Substituting the mean velocity for the Poiseuille flow for &,
we get

64
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» When plotted against Re, f jumps at around 2000 (see Fig.
6-7 in T&S) and follows the following empirical trend

f (12)

f=0.3164 Re1/*. (13)

» Considering the assumptions we made, the Poiseuille flow
solution obviously describes a laminar flow: v, and v,, are
zero therefore no “mixing” or momentum transfer is
possible.

» Thus, the relation (12), based on the Poiseuille flow
solution, is also valid only for a laminar pipe flow.



Laminar vs. Turbulent Flow V

» Eq. (13) holds for turbulent flows (Re > 2000) and
indicates that higher pressure gradients are required than
expected by a laminar flow theory.

» For example, to maintain the same velocity, we’ll have to
apply a greater pressure gradient to a low viscosity,
turbulent flow than to a high viscosity, laminar flow.

1Again from this collection of fluid mechanics movies and notes:
http://web.mit.edu/hml/ncfmf.html


http://web.mit.edu/hml/ncfmf.html

Geophysical Applications of the Poiseuille Flow

1. Artesian Aquifer Flows

» See Fig. 6-9 of T&S. The pressure gradient responsible for
the flow out of a well is

aP _ _pgb
ds R
where s and R’ are the arc length along and the radius of

the circular aquifer, b is the height difference between the
two ends of the aquifer.

(14)

» According to the equation for the volumetric (laminar) flow
rate (6),
_ pgbR*
- 8uR'’
where we set dP/ds to be equal to dP/dx and R is the
radius of the aquifer.

(15)



Geophysical Applications of the Poiseuille Flow
1. Artesian Aquifer Flows
> If the flow is turbulent?,

4R dP p \4
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» Using the pressure gradient given in (14), we can solve for

u:
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» By multiplying 7R? to the above equation and using (14),
we can get the volumetric flow rate as
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2Note that the definition of the friction factor doesn’t assume a laminar
flow.




Geophysical Applications of the Poiseuille Flow

2. Magma Flow through Volcanic Pipes

» If magma is in hydrostatic state, i.e., p; = p;gx where p; is
the pressure in a magma-filled pipe, p; is the magma
density and x is the vertical coordinate, increasing upward,
it wouldn’t flow.

» So, extra driving pressure is needed to make magma flow
through the pipe. Here, we assume that it is just as much
as needed p; to be equal to the lithostatic pressure, ps:

pr = —pigx + AP = ps and ps = —psgx. (19)

where ps is the density of lithosphere.

» So, the pressure driving magma upward would be

AP = —(ps — p1)gx. (20)



Geophysical Applications of the Poiseuille Flow

2. Magma Flow through Volcanic Pipes
» The vertical pressure gradient is then

dP

o —(ps — p1)g (21)

» Once the pressure gradient is known, one can compute u
and Q for laminar and turbulent cases as in the artesian
aquifer problem.



2D Flows - The Stream Function

> Let’s define a potential function, v (x, y), of which spatial
derivatives are the velocity components:
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» The continuity equation du/0x + dv/dy =0 s
automatically satisfied.
» The momentum equations become
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2D Flows - The Stream Function

» We can eliminate the pressure terms by taking partial
derivative of the above equations with respect to y and x,
respectively and summing them up. Then we get the
following biharmonic equation:
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where V? is the Laplacian operator, 9% /0x? + 92 /0y?.



Applications

Stream functions:
» Sec. 6.10 Postglacial rebound
» Sec. 6.11 Angle of subduction
» Sec. 6.12 Diapirism
» Sec. 6.13 Folding
Others:
» Sec. 6.14 Stokes Flow
» Sec. 6.15 Plume heads and tails (Stokes flow application)

» Sec. 6.16 Pipe Flow with Heat Addition (derivation from
the heat advection-diffusion eq)
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