
Pipe Flow or Poiseuille (/pwazé:i/) Flow I
▶ We derived the momentum balance equation for flows that

are
▶ in the steady state (∂v/∂t = 0),

▶ little varying in the flow direction (|v · ∇ v| ≈ 0),

▶ incompressible (∇ · v = 0),

▶ Newtonian (τ = 2µ ϵ̇)

when gravity is the only body force. In 2D:
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In 1D,

0 = −dP
dx

+ µ
d2u
dx2 . (2)

Can you guess the form of the equations in 3D?



Pipe Flow or Poiseuille (/pwazé:i/) Flow II

▶ Let’s consider some simplest possible cases: 1-D channel
flows.
▶ Couette flow.

▶ Pressure head-driven flow.

▶ For a flow in a perfectly circular and straight pipe, the
momentum balance equation also becomes
one-dimensional.

▶ The given geometry suggests the cylindrical coordinate
system.

▶ vr and vϕ are uniformly zero. Also, most of the spatial
derivatives are zero but ∂vx/∂r is not, where x axis
coincides with the central axis of the pipe.



Pipe Flow or Poiseuille (/pwazé:i/) Flow III

▶ Considering the above conditions, we end up with only the
x component in the cylindrical momentum balance
equation:

0 = −dP
dx

+ µ

(
1
r

d
dr

(
r
dvx

dr

))
. (3)

▶ Integrating (3) over r once, we get

r
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=
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where A is an integration constant.

▶ Integrating one more time after dividing both sides by r ,
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Pipe Flow or Poiseuille (/pwazé:i/) Flow IV
▶ Since vx should be finite at r = 0, A must be zero. Also we

can compute B from vx = 0 at r = R.

vx =
1

4µ
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)
. (4)

▶ The maximum velocity (umax ) and the volumetric flow rate
(Q), which is the total volume of fluid passing a cross
section per unit time, are:
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, (5)
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▶ By dividing Q with the area (πR2), we get the mean
velocity,

ū = −R2

8µ
dP
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=
1
2

umax . (7)



Laminar vs. Turbulent Flow I

▶ Watch 6 m 30 s - 11 m 40 s of this movie1 http://www.
youtube.com/watch?v=1_oyqLOqwnI&start=390&
feature=share&list=PL0EC6527BE871ABA3.

▶ Behaviors of a high viscosity and low velocity flow are
fundamentally different (not just in speed!) from those of a
low viscosity and high velocity flow: Collectively, the former
are said to be laminar while the latter turbulent.

▶ The term laminar means “layered” because in laminar
flows, a “layer” of fluid corresponding to a certain velocity in
its parabolic profile never crosses another layer of different
velocity.

▶ Turbulent flows are, in contrast, characterized by vigorous
“mixing” within the entire fluid layer. A turbulent flow
becomes unsteady with random eddies.

http://www.youtube.com/watch?v=1_oyqLOqwnI&start=390&feature=share&list=PL0EC6527BE871ABA3
http://www.youtube.com/watch?v=1_oyqLOqwnI&start=390&feature=share&list=PL0EC6527BE871ABA3
http://www.youtube.com/watch?v=1_oyqLOqwnI&start=390&feature=share&list=PL0EC6527BE871ABA3


Laminar vs. Turbulent Flow II

▶ Reynolds number is defined as

Re ≡ ρvL
µ

=
vL
ν
, (8)

where v and L are the velocity and length scale and nu is
the kinematic viscosity (not the Poisson’s ratio!).

▶ In our Poiseuille flow setting,

Re =
ρūD
µ

, (9)

where D = 2R.

▶ Transition from a laminar to a turbulent flow is only
empirically known to occur at Re ≈ 2200 in case of a pipe
flow.



Laminar vs. Turbulent Flow III

▶ It is convenient to define the frictional factor (equivalent
to the non-dimensional pressure gradient) for explaining
another difference between laminar and turbulent flows.

▶ The frictional factor (f ) is involved in the Darcy-Weisbach
equation that describes the pressure drop in a pipe flow:

∆P = −f
L
D
ρū2

2
. (10)

where D is the diameter of the pipe, equal to 2R.

▶ In case the pressure gradient is constant so that uniformly
equal to ∆P/L, we can rearrange this equation to

f = − 4R
ρū2

dP
dx

. (11)



Laminar vs. Turbulent Flow IV

▶ Substituting the mean velocity for the Poiseuille flow for ū,
we get

f =
64
Re

. (12)

▶ When plotted against Re, f jumps at around 2000 (see Fig.
6-7 in T&S) and follows the following empirical trend

f = 0.3164 Re−1/4. (13)

▶ Considering the assumptions we made, the Poiseuille flow
solution obviously describes a laminar flow: vr and vϕ are
zero therefore no “mixing” or momentum transfer is
possible.

▶ Thus, the relation (12), based on the Poiseuille flow
solution, is also valid only for a laminar pipe flow.



Laminar vs. Turbulent Flow V

▶ Eq. (13) holds for turbulent flows (Re > 2000) and
indicates that higher pressure gradients are required than
expected by a laminar flow theory.

▶ For example, to maintain the same velocity, we’ll have to
apply a greater pressure gradient to a low viscosity,
turbulent flow than to a high viscosity, laminar flow.

1Again from this collection of fluid mechanics movies and notes:
http://web.mit.edu/hml/ncfmf.html

http://web.mit.edu/hml/ncfmf.html


Geophysical Applications of the Poiseuille Flow

1. Artesian Aquifer Flows
▶ See Fig. 6-9 of T&S. The pressure gradient responsible for

the flow out of a well is

dP
ds

= −ρgb
πR′ , (14)

where s and R′ are the arc length along and the radius of
the circular aquifer, b is the height difference between the
two ends of the aquifer.

▶ According to the equation for the volumetric (laminar) flow
rate (6),

Q =
ρgbR4

8µR′ , (15)

where we set dP/ds to be equal to dP/dx and R is the
radius of the aquifer.



Geophysical Applications of the Poiseuille Flow
1. Artesian Aquifer Flows
▶ If the flow is turbulent2,
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ρū2
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▶ Using the pressure gradient given in (14), we can solve for
ū:
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▶ By multiplying πR2 to the above equation and using (14),
we can get the volumetric flow rate as

Q ≈ 7.686
(

gb
R′

)4/7

R19/7
(
ρ

µ

)1/7

. (18)

2Note that the definition of the friction factor doesn’t assume a laminar
flow.



Geophysical Applications of the Poiseuille Flow

2. Magma Flow through Volcanic Pipes
▶ If magma is in hydrostatic state, i.e., pl = ρlgx where pl is

the pressure in a magma-filled pipe, ρl is the magma
density and x is the vertical coordinate, increasing upward,
it wouldn’t flow.

▶ So, extra driving pressure is needed to make magma flow
through the pipe. Here, we assume that it is just as much
as needed pl to be equal to the lithostatic pressure, ps:

pl = −ρlgx +∆P = ps and ps = −ρsgx . (19)

where ρs is the density of lithosphere.

▶ So, the pressure driving magma upward would be

∆P = −(ρs − ρl)gx . (20)



Geophysical Applications of the Poiseuille Flow

2. Magma Flow through Volcanic Pipes
▶ The vertical pressure gradient is then

dP
dx

= −(ρs − ρl)g (21)

▶ Once the pressure gradient is known, one can compute ū
and Q for laminar and turbulent cases as in the artesian
aquifer problem.



2D Flows - The Stream Function
▶ Let’s define a potential function, ψ(x , y), of which spatial

derivatives are the velocity components:

u = −∂ψ
∂y

(22)

v =
∂ψ

∂x
(23)

▶ The continuity equation ∂u/∂x + ∂v/∂y = 0 is
automatically satisfied.

▶ The momentum equations become
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(24)
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∂y

+ µ

(
∂3ψ

∂x3 +
∂3ψ
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2D Flows - The Stream Function

▶ We can eliminate the pressure terms by taking partial
derivative of the above equations with respect to y and x,
respectively and summing them up. Then we get the
following biharmonic equation:

0 =
∂4ψ

∂x4 + 2
∂4ψ

∂x2∂y2 +
∂4ψ

∂y4 = ∇4ψ, (26)

where ∇2 is the Laplacian operator, ∂2/∂x2 + ∂2/∂y2.



Applications

Stream functions:
▶ Sec. 6.10 Postglacial rebound

▶ Sec. 6.11 Angle of subduction

▶ Sec. 6.12 Diapirism

▶ Sec. 6.13 Folding
Others:
▶ Sec. 6.14 Stokes Flow

▶ Sec. 6.15 Plume heads and tails (Stokes flow application)

▶ Sec. 6.16 Pipe Flow with Heat Addition (derivation from
the heat advection-diffusion eq)


	Channel Flow

