Stress

- We learned how to quantitatively describe the motion of a continuum body including its "internal deformation", which is represented by strain.
- In this lecture, we study what is the force associated with the internal deformation and how to incorporate it into the equation of force balance.
- A motion of a body is caused by two kinds of forces: Body and Surface (or contact) force.
- Gravity governing the free fall of a billiard ball: pure body force.
- Momentum transfer by collision with another billiard ball: (mostly) surface force.
- Easy to find examples of deformation of continua by surface forces.

Stress

http:
//www.amazon.com/Accoutrements-12021-Stress-Cupcake/dp/B00424LEV4/?tag=cupcakefun-20

Stress

more

Stress

- Let's consider a continuous body that is being strained by both body and surface forces.

Stress

- We need a quantity that represents the internal force arising in response to deformation occurring to a continuum body.
- Such a force should be additive to the body force: i.e., the surface force is also a vector.
- It is useful to consider force "densities": ex) The total graviational force is given by the integration of its density:

$$
M \mathbf{g}=\int_{V} \rho \mathbf{g} d V
$$

where $\rho \mathbf{g}$ is the force density.

Stress

- Generally, a body force, \mathbf{F}_{b} is the volume integration of its density, \mathbf{b} :

$$
\mathbf{F}_{b}=\int_{V} \mathbf{b} d V
$$

- Likewise, the surface force $\left(\mathbf{F}_{s}\right)$ can also be acquired by integrating its surface density:

$$
\mathbf{F}_{s}=\int_{A} \mathbf{t} d A
$$

We call \mathbf{t}, the surface force per area, traction.

- With these force densities, we can talk about the local forces acting on a point in the body rather than on the whole body.

Stress

- Note that different tractions arise on differently oriented areas even if the "state" of the material is unchanged.
- In particular, the traction is a linear function of the normal vector: i.e., we want to have net traction by summing up tractions acting on different parts of a surface.
- This property requires the existence of a linear mapping from a normal vector to a traction vector.
- Since a rank 2 tensor can represent such a linear mapping, this relationship hints the idea of stress tensor.
- Let's look at the reasoning leading to the concept of stress tensor more carefully.

Stress

- Cauchy's tetrahedron:

Stress

- When no body force is acting, the force equilibrium states

$$
\begin{equation*}
\mathbf{t}^{n} d A-\mathbf{t}^{1} d A_{1}-\mathbf{t}^{2} d A_{2}-\mathbf{t}^{3} d A_{3}=\rho\left(\frac{h}{3} d A\right) \mathbf{a} \tag{1}
\end{equation*}
$$

- Since $d A_{i}, i=1, \ldots, 3$ is projection of $d A$,

$$
\begin{align*}
d A_{1} & =\mathbf{n} d A \cdot \mathbf{e}_{1} \\
d A_{2} & =\mathbf{n} d A \cdot \mathbf{e}_{2} \tag{2}\\
d A_{3} & =\mathbf{n} d A \cdot \mathbf{e}_{3}
\end{align*}
$$

- Substituting (2) into (1), we get

$$
\begin{equation*}
\mathbf{t}^{n}-\mathbf{t}^{1}\left(\mathbf{n} \cdot \mathbf{e}_{1}\right)-\mathbf{t}^{2}\left(\mathbf{n} \cdot \mathbf{e}_{2}\right)-\mathbf{t}^{3}\left(\mathbf{n} \cdot \mathbf{e}_{3}\right)=\rho\left(\frac{h}{3}\right) \mathbf{a} \tag{3}
\end{equation*}
$$

Note that $d A$ has been cancelled out.

Stress

- In the limit $h \rightarrow 0$, the right hand side is identically zero. Therefore,

$$
\begin{equation*}
\mathbf{t}^{n}=\mathbf{t}^{1} n_{1}+\mathbf{t}^{2} n_{2}+\mathbf{t}^{3} n_{3} \tag{4}
\end{equation*}
$$

Or,

$$
\begin{align*}
& t_{1}^{n}=t_{1}^{1} n_{1}+t_{1}^{2} n_{2}+t_{1}^{3} n_{3}, \\
& t_{2}^{n}=t_{2}^{1} n_{1}+t_{2}^{2} n_{2}+t_{2}^{3} n_{3}, \tag{5}\\
& t_{2}^{n}=t_{3}^{1} n_{1}+t_{3}^{2} n_{2}+t_{3}^{3} n_{3}
\end{align*}
$$

- Eq. (4) further implies that there is a rank 2 tensor, σ, such that

$$
\begin{equation*}
\mathbf{t}^{n}=\sigma \mathbf{n} \tag{6}
\end{equation*}
$$

where the column vectors of σ are $\mathbf{t}^{i}(i=1 \ldots 3)$.

Properties of Cauchy Stress Tensor

- We call the rank 2 tensor σ the Cauchy stress tensor.
- Note that all the considerations so far have been made with respect to the current (or deformed) configuration.
- When projected along the standard orthonormal basis, $\left\{\mathbf{e}_{a}\right\}$, we get

$$
\mathbf{e}_{a} \cdot \boldsymbol{\sigma} \mathbf{e}_{b}=\sigma_{a b} .
$$

- Also,

$$
\begin{align*}
& \mathbf{t}_{e_{1}}=\sigma \mathbf{e}_{1}=\sigma_{11} \mathbf{e}_{1}+\sigma_{21} \mathbf{e}_{2}+\sigma_{31} \mathbf{e}_{3}, \\
& \mathbf{t}_{e_{2}}=\sigma \mathbf{e}_{2}=\sigma_{12} \mathbf{e}_{1}+\sigma_{22} \mathbf{e}_{2}+\sigma_{32} \mathbf{e}_{3}, \tag{7}\\
& \mathbf{t}_{e_{3}}=\boldsymbol{\sigma} \mathbf{e}_{3}=\sigma_{13} \mathbf{e}_{1}+\sigma_{23} \mathbf{e}_{2}+\sigma_{33} \mathbf{e}_{3} .
\end{align*}
$$

- From the relations (7), we can visualize traction components and stress components as in Fig. 3.3 of the handout.

Properties of Cauchy Stress Tensor

- Cauchy stress, σ, is symmetric. For a proof, wait until we get to the balance principles.
- Understand the following concepts and the characteristics of the associated Cauchy stress matrix:
- Normal and shear stress
- Uni-, bi- and triaxial stress state
- Pure shear stress state
- Hydro(or litho)static stress state
- Plane stress state

Properties of Cauchy Stress Tensor

- We make frequent use of invariants, principal stresses and associated directions.
- Principal stresses and strains and the associated principal directions are mathematically eigenvalues and eigenvectors.
- Review the related maths here:

```
https:
//www.khanacademy.org/math/linear-algebra/
alternate-bases#eigen-everything
```


Coordinate Transformation by Rotation

- Vector coordinate transformation: $\mathbf{v}^{\prime}=\mathbf{Q v}$, where \mathbf{Q} is the forward rotation matrix. For instance, a counterclockwise rotation of a point (represented by the coordinate vector) around the x_{3} axis by an angle θ (radian) is represented by the following matrix:

$$
\mathbf{Q}=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Note that this rotation is equivalent to the rotation of the reference frame by $-\theta$ around the x_{3} axis; and thus the rotation of the reference frame by θ is represented by the matrix $\mathbf{Q}^{T}=\mathbf{Q}(-\theta)$.
- Now, let's say a vector t is mapped by a rank 2 tensor, σ from another vector \mathbf{n} in one coordinate system.

$$
\begin{equation*}
\mathbf{t}=\boldsymbol{\sigma} \mathbf{n} \tag{8}
\end{equation*}
$$

Coordinate Transformation by Rotation

- When the coordinate system is rotated by θ, how does the rank 2 tensor transform?
- The transformed vectors and tensors are denoted as primed symbols: $\mathbf{t}^{\prime}, \mathbf{n}^{\prime}$ and σ^{\prime}. Then in the rotated coordinate system,

$$
\begin{equation*}
\mathbf{t}^{\prime}=\boldsymbol{\sigma}^{\prime} \mathbf{n}^{\prime} \tag{9}
\end{equation*}
$$

- Here, we have $\mathbf{t}^{\prime}=\mathbf{Q}^{\top} \mathbf{t}$ and $\mathbf{n}^{\prime}=\mathbf{Q}^{T} \mathbf{n}$. By plugging these into Eq. (9), we get

$$
\mathbf{Q}^{\top} \mathbf{t}=\boldsymbol{\sigma}^{\prime} \mathbf{Q}^{\top} \mathbf{n}
$$

Therefore

$$
\begin{equation*}
\mathbf{t}=\left(\mathbf{Q} \boldsymbol{\sigma}^{\prime} \mathbf{Q}^{T}\right) \mathbf{n} \tag{10}
\end{equation*}
$$

Coordinate Transformation by Rotation

- From (8) and (10),

$$
\boldsymbol{\sigma}=\mathbf{Q} \boldsymbol{\sigma}^{\prime} \mathbf{Q}^{T}
$$

Equivalently,

$$
\begin{equation*}
\boldsymbol{\sigma}^{\prime}=\mathbf{Q}^{T} \boldsymbol{\sigma} \mathbf{Q} \tag{11}
\end{equation*}
$$

- In a 2D case (e.g., plane stress), we get the Mohr Transformation:

$$
\begin{align*}
& \sigma_{11}^{\prime}=\sigma_{11} \cos ^{2} \theta+\sigma_{22} \sin ^{2} \theta+\sigma_{12} \sin 2 \theta \tag{12}\\
& \sigma_{22}^{\prime}=\sigma_{11} \sin ^{2} \theta+\sigma_{22} \cos ^{2} \theta-\sigma_{12} \sin 2 \theta \tag{13}\\
& \sigma_{12}^{\prime}=\left(\sigma_{22}-\sigma_{11}\right) \sin \theta \cos \theta+\sigma_{12} \cos 2 \theta \tag{14}
\end{align*}
$$

- Using this transformation, you can find the angle of a plane on which normal or shear stress is maximized.

Mohr's circle

Let's rearrange the Mohr transformation equations:

$$
\begin{aligned}
& \sigma_{11}^{\prime}=\sigma_{11} \frac{1+\cos 2 \theta}{2}+\sigma_{22} \frac{1-\cos 2 \theta}{2}+\sigma_{12} \sin 2 \theta \\
& \sigma_{22}^{\prime}=\sigma_{11} \frac{1-\cos 2 \theta}{2}+\sigma_{22} \frac{1+\cos 2 \theta}{2}-\sigma_{12} \sin 2 \theta \\
& \sigma_{12}^{\prime}=\left(\sigma_{22}-\sigma_{11}\right) \frac{\sin 2 \theta}{2}+\sigma_{12} \cos 2 \theta \\
& \sigma_{11}^{\prime}=\frac{\sigma_{11}+\sigma_{22}}{2}+\frac{\sigma_{11}-\sigma_{22}}{2} \cos 2 \theta+\sigma_{12} \sin 2 \theta \\
& \sigma_{22}^{\prime}=\frac{\sigma_{11}+\sigma_{22}}{2}-\frac{\sigma_{11}-\sigma_{22}}{2} \cos 2 \theta+\sigma_{12} \sin 2 \theta \\
& \sigma_{12}^{\prime}=-\frac{\sigma_{11}-\sigma_{22}}{2} \sin 2 \theta+\sigma_{12} \cos 2 \theta
\end{aligned}
$$

Coordinate Transformation by Rotation

$$
\begin{align*}
& \sigma_{11}^{\prime}=\frac{\sigma_{11}+\sigma_{22}}{2}+\frac{\sigma_{11}-\sigma_{22}}{2} \cos 2 \theta+\sigma_{12} \sin 2 \theta \tag{15}\\
& \sigma_{22}^{\prime}=\frac{\sigma_{11}+\sigma_{22}}{2}-\frac{\sigma_{11}-\sigma_{22}}{2} \cos 2 \theta+\sigma_{12} \sin 2 \theta \tag{16}\\
& \sigma_{12}^{\prime}=-\frac{\sigma_{11}-\sigma_{22}}{2} \sin 2 \theta+\sigma_{12} \cos 2 \theta \tag{17}
\end{align*}
$$

- Find an angle θ at which the shear stress (σ_{12}^{\prime}) vanishes. The angle is called the principal angle and the corresponding normal stresses (σ_{11}^{\prime} and σ_{22}^{\prime}) is called the principal stress.
- Since $\tan (2 \theta)=\tan (2 \theta+\pi)=\tan (2(\theta+\pi / 2)), \theta+\pi / 2$ is also a principal angle.
- Find the principal stresses.

Mohr's circle

- Let's assume that we started with the principal axes such that $\sigma_{11}=\sigma_{1}, \sigma_{22}=\sigma_{2}$ and $\sigma_{12}=0$.
- After a rotation of the coordinate axes by an arbitrary value of θ, we get the following transformed stress components:

$$
\begin{aligned}
\sigma_{11}^{\prime} & =\frac{\sigma_{1}+\sigma_{2}}{2}+\frac{\sigma_{1}-\sigma_{2}}{2} \cos 2 \theta=-p+R \cos 2 \theta, \\
\sigma_{22}^{\prime} & =\frac{\sigma_{1}+\sigma_{2}}{2}-\frac{\sigma_{1}-\sigma_{2}}{2} \cos 2 \theta=-p-R \cos 2 \theta, \\
\sigma_{12}^{\prime} & =-\frac{\sigma_{1}-\sigma_{2}}{2} \sin 2 \theta=-R \sin 2 \theta .
\end{aligned}
$$

- One can also realize that

$$
\begin{gathered}
\left(\sigma_{11}^{\prime}+p\right)^{2}+\sigma_{12}^{\prime 2}=R^{2}, \\
\text { and } \\
\left(\sigma_{22}^{\prime}+p\right)^{2}+\sigma_{12}^{\prime 2}=R^{2}
\end{gathered}
$$

Mohr's circle

- In other words, since θ is arbitrary, any transformed stress components must be on a circle centered at $-p$ with a radius R.
- This circle is called the Mohr's circle.
- Be careful with the sign convention. Here, we are assuming the tension positive convention and the definition, $p=-\sigma_{k k} / n_{\text {dim }}$.
- Let's try to understand Figs. 3.14-18 of the handout.

