
Stress

▶ We learned how to quantitatively describe the motion of a
continuum body including its “internal deformation”, which
is represented by strain.

▶ In this lecture, we study what is the force associated with
the internal deformation and how to incorporate it into the
equation of force balance.

▶ A motion of a body is caused by two kinds of forces: Body
and Surface (or contact) force.
▶ Gravity governing the free fall of a billiard ball: pure body

force.

▶ Momentum transfer by collision with another billiard ball:
(mostly) surface force.

▶ Easy to find examples of deformation of continua by surface
forces.



Stress

http:

//www.amazon.com/Accoutrements-12021-Stress-Cupcake/dp/B00424LEV4/?tag=cupcakefun-20
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Stress

http://www.see.leeds.ac.uk/structure/dynamicearth/plates/rebound.htm
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Stress
▶ Let’s consider a continuous body that is being strained by

both body and surface forces.

http://en.wikipedia.org/wiki/Stress_%28mechanics%29

http://en.wikipedia.org/wiki/Stress_%28mechanics%29


Stress

▶ We need a quantity that represents the internal force
arising in response to deformation occurring to a
continuum body.

▶ Such a force should be additive to the body force: i.e., the
surface force is also a vector.

▶ It is useful to consider force “densities”:
ex) The total graviational force is given by the integration of
its density:

Mg =

∫
V
ρgdV ,

where ρg is the force density.



Stress

▶ Generally, a body force, Fb is the volume integration of its
density, b:

Fb =

∫
V

b dV .

▶ Likewise, the surface force (Fs) can also be acquired by
integrating its surface density:

Fs =

∫
A

t dA.

We call t, the surface force per area, traction.

▶ With these force densities, we can talk about the local
forces acting on a point in the body rather than on the
whole body.



Stress

▶ Note that different tractions arise on differently oriented
areas even if the “state” of the material is unchanged.

▶ In particular, the traction is a linear function of the normal
vector: i.e., we want to have net traction by summing up
tractions acting on different parts of a surface.

▶ This property requires the existence of a linear mapping
from a normal vector to a traction vector.

▶ Since a rank 2 tensor can represent such a linear mapping,
this relationship hints the idea of stress tensor.

▶ Let’s look at the reasoning leading to the concept of stress
tensor more carefully.



Stress

▶ Cauchy’s tetrahedron:



Stress

▶ When no body force is acting, the force equilibrium states

tn dA − t1 dA1 − t2 dA2 − t3 dA3 = ρ

(
h
3

dA
)

a (1)

▶ Since dAi , i=1, . . . ,3 is projection of dA,

dA1 = ndA · e1

dA2 = ndA · e2

dA3 = ndA · e3

(2)

▶ Substituting (2) into (1), we get

tn − t1(n · e1)− t2(n · e2)− t3(n · e3) = ρ

(
h
3

)
a (3)

Note that dA has been cancelled out.



Stress

▶ In the limit h → 0, the right hand side is identically zero.
Therefore,

tn = t1 n1 + t2 n2 + t3 n3. (4)

Or,

tn
1 = t1

1 n1 + t2
1 n2 + t3

1 n3,

tn
2 = t1

2 n1 + t2
2 n2 + t3

2 n3,

tn
2 = t1

3 n1 + t2
3 n2 + t3

3 n3.

(5)

▶ Eq. (4) further implies that there is a rank 2 tensor, σ, such
that

tn = σ n, (6)

where the column vectors of σ are ti (i = 1 . . . 3).



Properties of Cauchy Stress Tensor
▶ We call the rank 2 tensor σ the Cauchy stress tensor.

▶ Note that all the considerations so far have been made
with respect to the current (or deformed) configuration.

▶ When projected along the standard orthonormal basis,
{ea}, we get

ea · σeb = σab.

▶ Also,

te1 = σe1 = σ11e1 + σ21e2 + σ31e3,

te2 = σe2 = σ12e1 + σ22e2 + σ32e3,

te3 = σe3 = σ13e1 + σ23e2 + σ33e3.

(7)

▶ From the relations (7), we can visualize traction
components and stress components as in Fig. 3.3 of the
handout.



Properties of Cauchy Stress Tensor

▶ Cauchy stress, σ, is symmetric. For a proof, wait until we
get to the balance principles.

▶ Understand the following concepts and the characteristics
of the associated Cauchy stress matrix:
▶ Normal and shear stress

▶ Uni-, bi- and triaxial stress state

▶ Pure shear stress state

▶ Hydro(or litho)static stress state

▶ Plane stress state



Properties of Cauchy Stress Tensor

▶ We make frequent use of invariants, principal stresses
and associated directions.
▶ Principal stresses and strains and the associated principal

directions are mathematically eigenvalues and
eigenvectors.

▶ Review the related maths here:
https:
//www.khanacademy.org/math/linear-algebra/
alternate-bases#eigen-everything

https://www.khanacademy.org/math/linear-algebra/alternate-bases#eigen-everything
https://www.khanacademy.org/math/linear-algebra/alternate-bases#eigen-everything
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Coordinate Transformation by Rotation
▶ Vector coordinate transformation: v′ = Qv, where Q is the

forward rotation matrix. For instance, a counterclockwise
rotation of a point (represented by the coordinate vector)
around the x3 axis by an angle θ(radian) is represented by
the following matrix:

Q =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


▶ Note that this rotation is equivalent to the rotation of the

reference frame by −θ around the x3 axis; and thus the
rotation of the reference frame by θ is represented by the
matrix QT = Q(−θ).

▶ Now, let’s say a vector t is mapped by a rank 2 tensor, σ
from another vector n in one coordinate system.

t = σn (8)



Coordinate Transformation by Rotation

▶ When the coordinate system is rotated by θ, how does
the rank 2 tensor transform?

▶ The transformed vectors and tensors are denoted as
primed symbols: t′, n′ and σ′. Then in the rotated
coordinate system,

t′ = σ′n′ (9)

▶ Here, we have t′ = QT t and n′ = QT n. By plugging these
into Eq. (9), we get

QT t = σ′QT n

Therefore
t = (Qσ′QT )n (10)



Coordinate Transformation by Rotation

▶ From (8) and (10),
σ = Qσ′QT

Equivalently,
σ′ = QTσQ (11)

▶ In a 2D case (e.g., plane stress), we get the Mohr
Transformation:

σ′
11 = σ11 cos

2 θ + σ22 sin
2 θ + σ12 sin2θ (12)

σ′
22 = σ11 sin

2 θ + σ22 cos
2 θ − σ12 sin2θ (13)

σ′
12 = (σ22 − σ11) sin θ cos θ + σ12 cos2θ (14)

▶ Using this transformation, you can find the angle of a plane
on which normal or shear stress is maximized.



Mohr’s circle

Let’s rearrange the Mohr transformation equations:

σ′
11 = σ11

1 + cos 2θ
2

+ σ22
1 − cos2θ

2
+ σ12 sin2θ

σ′
22 = σ11

1 − cos2θ
2

+ σ22
1 + cos 2θ

2
− σ12 sin2θ

σ′
12 = (σ22 − σ11)

sin2θ
2

+ σ12 cos2θ

σ′
11 =

σ11 + σ22

2
+

σ11 − σ22

2
cos2θ + σ12 sin2θ

σ′
22 =

σ11 + σ22

2
− σ11 − σ22

2
cos2θ + σ12 sin2θ

σ′
12 = −σ11 − σ22

2
sin2θ + σ12 cos2θ



Coordinate Transformation by Rotation

σ′
11 =

σ11 + σ22

2
+

σ11 − σ22

2
cos2θ + σ12 sin2θ (15)

σ′
22 =

σ11 + σ22

2
− σ11 − σ22

2
cos2θ + σ12 sin2θ (16)

σ′
12 = −σ11 − σ22

2
sin2θ + σ12 cos2θ (17)

▶ Find an angle θ at which the shear stress (σ′
12) vanishes.

The angle is called the principal angle and the
corresponding normal stresses (σ′

11 and σ′
22) is called the

principal stress.

▶ Since tan(2θ) = tan(2θ + π) = tan(2(θ + π/2)), θ + π/2 is
also a principal angle.

▶ Find the principal stresses.



Mohr’s circle
▶ Let’s assume that we started with the principal axes such

that σ11 = σ1, σ22 = σ2 and σ12 = 0.

▶ After a rotation of the coordinate axes by an arbitrary value
of θ, we get the following transformed stress components:

σ′
11 =

σ1 + σ2

2
+

σ1 − σ2

2
cos2θ = −p + R cos2θ,

σ′
22 =

σ1 + σ2

2
− σ1 − σ2

2
cos2θ = −p − R cos2θ,

σ′
12 = −σ1 − σ2

2
sin2θ = −R sin2θ.

▶ One can also realize that

(σ′
11 + p)2 + σ′ 2

12 = R2,

and

(σ′
22 + p)2 + σ′ 2

12 = R2.



Mohr’s circle

▶ In other words, since θ is arbitrary, any transformed stress
components must be on a circle centered at −p with a
radius R.

▶ This circle is called the Mohr’s circle.

▶ Be careful with the sign convention. Here, we are
assuming the tension positive convention and the
definition, p = −σkk/ndim.

▶ Let’s try to understand Figs. 3.14-18 of the handout.
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