
How to measure stress and strain

I Measureing stress: Overcoring
I Can measure various components of stress (see. Fi.g 2.17

in T&S)

I Length of the hole is limited to 1 m so it is necessary to drill
the holes in mines for measurements at greater depths.



How to measure stress and strain
I Measureing stress:

Hydrofracturing
I See. Fig. 2.18 in T&S and

understand breakdown
pressure (pb),
instantaneous shut-in
pressure (ISIP), and the
time evolution of pressure.

I Can measure the
magnitude of σmin, the
minimum horizontal stress if
the fractures are vertical.

I In general, fracture planes
would be perpendicular to
the minimum principal
stress.

I Understand Fig. 2.19 in
T&S.
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How to measure stress and strain

I Measureing stress: Wellbore breakouts

I Provide the orientations of the maximum and minimum
horizontal stresses but not always their magnitudes.

I
https://www.spec2000.net/23-fracorientation.htm



How to measure stress and strain

I Measureing strain: Requires accurate measurements of
distance between benchmarks/stations.

I Triangulation

I SLR, VLBI

I GPS

I InSAR



How to Relate Stress and Strain

I We have considered deformation of continua and some of
the balance laws in them.

I These kinematics and mechanics apply to all the
continuous media. Then, where do the characteristics of
individual material come from?

I Properties unique to a certain material are determined by
the material’s internal constitution or physical make-up.
The quantitative expressions for such internal constitution
are called constitutive equations / laws / relations /
models.

I The role of constitutive relations is to relate stress (a
quantity needed for stating the linear momentum balance
law) and strain (a quantity used to describe motion of
continua).



Linear Elasticity

I Hooke’s law for a 1 dimensional mass-spring system:

F = −kx

I If no damping force acts on it, the system is conservative,
meaning by definition that there is a potential function U(x)
such that F = −∇U.

I In this 1D example, integration to get U is straightforward
and U = 1

2kx2.



Linear Elasticity

I A material is called ideally elastic when a body formed of
the material recovers its original form completely upon
removal of the forces causing the deformation, and there is
a one-to-one relationship between the state of stress and
the state of strain, for a given temperature.

I The one-to-one relationship precludes behaviors like creep
at constant load or stress relaxation at constant strain.

I The classical elastic constitutive equations, often called the
generalized Hooke’s law, are nine equations expressing
the stress components as linear homonenous (i.e., all the
terms are of the same power) functions of the nine strain
components:

σij = Cijklεkl (1)



Linear Elasticity

I The rank 4 tensor, Cijkl , has 81(= 34) components.

I However, recall that stress and strain tensor are
symmetric: i.e., σij = σji and εkl = εlk .

I Thus,
Cijkl = Cjikl and Cijkl = Cijlk .

I We further consider the case in which the material is
elastically isotropic, i.e., there are no preferred directions
in the material. Then, the elastic constants (Cijkl ) must be
the same at a given particle for all possible choices of
rectangular Cartesian coordinates in which stress and
strain components are evaluated.



Linear Elasticity

I The most general rank 4 tensor that satisfy all of the above
symmetry and isotropy conditions is

Cijkl = λδijδkl + µ(δikδjl + δilδjk ) (2)

(see Malvern Sec. 6.1 and 6.2 for further details.)

I The constitutive relation becomes

σij =
[
λδijδkl + µ(δikδjl + δilδjk )

]
εkl (3)

I Finally, after some simplification, we reach the isotropic
generalized Hooke’s law:

σij = λεkkδij + 2µεij , (4)

where λ and µ are called Lamé’s constants.



Linear Elasticity

I By setting i = j in Eq. (4), we find

σii = (3λ+ 2µ)εii (5)

I By substituting εkk = σkk/(3λ+ 2µ) (from Eq. (5)) into Eq.
(4), we obtain

εij = − λ

2µ(3λ+ 2µ)
σkkδij +

1
2µ
σij (6)

I Recall the definitions of Young’s modulus and Poisson’s
relation:
I Hooke’s law: σxx = Eεxx , etc, where E is the Young’s

modulus.

I Poisson’s relation: e.g., εyy = εzz = −νεxx = − ν
E σxx , where

ν is the Poisson’s ratio.



Linear Elasticity

I From these relations, we derive the following for 3D:

εxx =
1
E

[σxx − ν(σyy + σzz)]

εyy =
1
E

[σyy − ν(σzz + σxx )]

εzz =
1
E

[σzz − ν(σxx + σyy )]

εxy =
1

2µ
σxy , etc.

(7)

I The above set of equations can be generalized to the
following indicial notation:

εij = − ν
E
σkkδij +

1 + ν

E
σij (8)



Linear Elasticity
I It is also convenient to decompose the stress and strain

tensor into deviatoric and volumetric parts:

sij = σij −
1
3
σkkδij

εij = εij −
1
3
εkkδij

(9)

I Then, the whole relationship can be expressed by the two
equations:

sij = 2µεij and p = −Ke, (10)

where p = −σkk/3 is the pressure, e = εkk si the volume
strain, and K is the bulk modulus, related to Lamé’s
constants by the relation

K = λ+
2
3
µ (11)



Linear Elasticity

I In the case of isotropic elasticity, all the elastic constants
(λ, µ, E , ν, K ) can be expressed in terms of just two
independent constants.

I µ, the shear modulus, is often denoted as G.

I Poisson’s ratio: Which is better for wine bottle, cork or
rubber?
Negative Poisson’s ratio?
http://www.youtube.com/watch?v=HJ1Ck6FIqwU

http://www.youtube.com/watch?v=HJ1Ck6FIqwU


Linear Elasticity: Some simple cases

I Dilatation and incompressibility
Lithostatic condition: Diviatroic stresses are zero and
σ1 = σ2 = σ3 = ρgh, where h is depth, negative downward.

I Pure shear and simple shear

I Uniaxial stress: σ1 6= 0, σ2 = 0 and σ3 = 0.

I Uniaxial strain: ε1 6= 0, ε2 = 0 and ε3 = 0.
I Sedimentation

I Erosion



Linear Elasticity: Plane Stress/Strain I

I Stress state in which σ3j = 0 with j = 1 . . . 3.

I In terms of principal stress, σ1 6= 0, σ2 6= 0 and σ3 = 0.

I From Eq. (8),

ε1 =
1
E

(σ1 − νσ2)

ε2 =
1
E

(σ2 − νσ1)

ε3 = − ν
E

(σ1 + σ2)

(12)

I Let’s assume that the lithosphere is in a lithostatic
condition.



Linear Elasticity: Plane Stress/Strain II

I Now, if deviatoric stresses in the plane stress condition are
applied, of which two horizontal principal stresses are
equal in magnitude,

∆σ1 = ∆σ2 6= 0 but ∆σ3 = 0.

I Then, we get

ε1 = ε2 =
1− ν

E
∆σ1

ε3 = −2ν
E

∆σ1.

(13)

I Plane strain: ε1 6= 0, ε2 6= 0 and ε3 = 0.
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