
Balance Laws: Transport Theorem
▶ Reminder: material time derivative

▶ Time derivative of a quantity Q in the referece configuration:

DQ
Dt

=
∂Q
∂t

=
∂Q(X, t)

∂t
.

▶ Time derivative of the same quantity expressed in the
current configuration: Since q(x(X, t), t) = Q(X, t),

Dq
Dt

=
∂q
∂t

+ (v · ∇)q. (1)

▶ Reynolds transport theorem

D
Dt

∫
v(t)

f dv =

∫
v(t)

(
Df
Dt

+ f∇ · v
)

dv

=

∫
v(t)

(
∂f
∂t

+∇ · (fv)
)

dv
(2)



Balance Laws: Transport Theorem
▶ Proof of the transport theorem:

By change of variables, and differentiating under the
integral sign,

d
dt

∫
v(t)

f dv =
d
dt

∫
V

f (ϕ(X, t), t) J(X, t)dV

=

∫
V

[
J(X, t)

d
dt

f (ϕ(X, t), t) + f (ϕ(X, t), t)
d
dt

J(X, t)
]

dV .

where J is the Jacobian determinant, det(∂x/∂X).
Changing variables back to x, we get

d
dt

∫
v(t)

f dv =

∫
V

[
ḟ (ϕ(X, t), t) + f (ϕ(X, t), t)

J̇
J

]
J dV

=

∫
v(t)

[
ḟ (x, t) + f (x, t)∇ · v

]
dv



Balance Laws: Transport Theorem

▶ The physical meaning is that the rate of change of a
quantity contained within (or integrated over) the current
configuration is equal to the volume integration over the
current configuration of the time rate of change of the
quantity and its net flux associated with the motion of
material.



Balance Laws: Mass balance (or conservation)
▶ Mass conservation (material is neither created nor lost

during deformation):

∂

∂t

∫
V

R dV =
D
Dt

∫
v(t)

ρ(x, t)dv = 0 (3)

▶ By Reynolds transport theorem, we get∫
v(t)

[
∂ρ

∂t
+∇ · (ρv)

]
dv = 0. (4)

▶ Since Eq. (4) should hold for arbitrary subset of the body,
the integrand itself must vanish everywhere if it is
continuous almost everywhere. Then, we get the usual
differential equation form of the mass conservation
principle:

∂ρ

∂t
+∇ · (ρv) = 0. (5)



Balance Laws: Force Balance (or conservation of
linear momentum)

▶ For a mass particle:

dp
dt

=
∑

i

Fi , (6)

where p is the linear momentum of the particle and Fi is
the i-th force acting on it.

▶ For a continuous body,

d
dt

∫
v(t)

ρ v dv =

∫
v(t)

b dv +

∫
∂v(t)

t dS (7)

or if we introduce Cauchy stress into the above equation,
we get

d
dt

∫
v(t)

ρ v dv =

∫
v(t)

b dv +

∫
∂v(t)

σn dS (8)



Balance Laws: Force Balance (or conservation of
linear momentum)

▶ By the Gauss’s theorem1,∫
∂v(t)

σn dS =

∫
v(t)

∇ · σdv . (9)

▶ Therefore, (8) becomes∫
v(t)

(∇ · σ + b) dv − d
dt

∫
v(t)

ρ v dv = 0. (10)

▶ We apply Reynolds transport theorem to the second term
on the left hand side of Eq. (10). Interestingly, we get the
following identity:

d
dt

∫
v(t)

ρ v dv =

∫
v(t)

ρ
dv
dt

dv .

1For proof, see https://www.khanacademy.org/video/
divergence-theorem-proof-part-1

https://www.khanacademy.org/video/divergence-theorem-proof-part-1
https://www.khanacademy.org/video/divergence-theorem-proof-part-1


Balance Laws: Force Balance (or conservation of
linear momentum)

▶ Plugging the previous identity into Eq. (10), we get∫
v(t)

[
∇ · σ + b − ρ

dv
dt

]
dv = 0. (11)

▶ Since Eq. (11) should hold not only for the entire volume
but also for any arbitrary subset of the body, the integrand
itself should be zero IF it is a continuous function.
Consequently, we obtain the local equation of motion or
force balance:

∇ · σ + b = ρ
dv
dt

. (12)



Balance Laws: Force Balance (or conservation of
linear momentum)

▶ If the motion is not time dependent, meaning either a static
equilibrium (all the velocities are zero) or a steady state (all
the velocities are constant, possibly non-zero), the inertial
term of Eq. (13) is zero and the local equation of motion
becomes

∇ · σ + b = 0. (13)

This is the most frequently encountered form in
geodynamics.



Balance Laws: Force Balance (or conservation of
linear momentum)

▶ We can change the coordinates to those of the reference
configuration and get the corresponding set of equations.
Although very important in non-linear continuum
mechanics, we are not going to cover them here.

▶ Those who are interested might want to read
▶ Belytschko, T., W. K. Liu, B. Moran, and K. I. Elkhodary

(2014), Nonlinear Finite Elements for Continua and
Structures, 2nd ed., John Wiley & Sons, Ltd.

▶ Holzapfel, G. A. (2000), Nonlinear solid mechanics : a
continuum approach for engineering, Wiley, Chichester ;
New York.

▶ Malvern, L. E. (1969), Introduction to the Mechanics of a
Continuous Medium, Prentice-Hall, Inc., Upper Saddle
River, New Jersey.
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