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Description of Motion

▶ We wish to describe the generic motion of a material body
(B), including translation and rigid body rotation as well as
time dependent ones.

▶ To trace the motion of B, we establish an absolutely fixed
(inertial) frame of reference so that points in the Euclidean
space (R3) can be identified by their position (x) or their
coordinates (xi , i=1,2,3).

▶ The subsets of R3 occupied by B are called the
configurations of the body. The initially known
configuration is particularly called reference configuration.



Description of Motion

▶ It is fundamentally important to distinguish between the
particles (P) of the body and their places in R3: the
particles should be thought of as physical entities - pieces
of matter - whereas the places are merely positions in R3

in which particles may or may not be at any specific time.

▶ To identify particles, we label them in much the same way
one labels discrete particles in classical dynamics.
However, since B is a uncountable continuum of particles,
we cannot use the integers to label them as in particle
dynamics.



Description of Motion

▶ The problem is resolved by placing each particle in B in
correspondence with an ordered triple X= (X1,X2,X3) of
real numbers. Mathematically, this “correspondence” is a
homeomorphism from B into R3, we make no distinction
between B and the set of particle labels.

▶ The numbers Xi associated with particle X∈B are called
the material coordinates of X.



Description of Motion

▶ For convenience, it is customary to choose the material
coordinates of X to exactly coincide with the spatial
coordinates, x when B occupies its reference
configuration.

▶ A motion of B is a time-dependent family of configurations,
written x = ϕ(X, t). Of course, X = ϕ(X,0).

▶ To prevent weird, non-realistic behaviors, we also require
configurations (i.e., the mapping ϕ) to be sufficiently
smooth (to be able to take derivatives), invertible (to
prevent self-penetration, for instance), and orientation
preserving (to prevent a mapping to a mirror image).



Description of Motion
▶ Material velocity of a point X is defined by

V(X, t) = (∂/∂t)ϕ(X, t)

▶ Velocity viewed as a function of (x, t), denoted v(x, t), is
called spatial velocity.

V(X, t) = v(x, t)

▶ Material acceleration of a motion ϕ(X, t) is defined by

A(X, t) =
∂2ϕ

∂t2 (X, t) =
∂V
∂t

(X, t)

By the chain rule,

∂V
∂t

=
∂v
∂t

+ (v · ∇)v



Description of Motion

▶ In general, if Q(X, t) is a material quantity–a given function
of (X, t)– and q(x, t) = Q(X, t) is the same quantity
expressed as a function of (x, t), then the chain rule gives

∂Q
∂t

=
∂q
∂t

+ (v · ∇)q.

▶ The right-hand side is called the material time derivative
of a spatial field, q, and is denoted Dq/Dt = q̇.

▶ Dq/Dt is the derivative of q with respect to t, holding X
fixed, while ∂q/∂t is the derivative of q with respect to t
holding x fixed. In particular

v̇ = Dv/Dt = ∂V/∂t .



Example

x = ϕ(X, t) =
(

X1(1 + t2),X2(1 + t2),X3(1 + t2)
)

X = ϕ−1(x, t) =
(

x1

1 + t2 ,
x2

1 + t2 ,
x3

1 + t2

)
V =

∂ϕ

∂t
= (2X1t ,2X2t ,2X3t)

v = V(ϕ−1(x, t), t) =
(

2x1t
1 + t2 ,

2x2t
1 + t2 ,

2x3t
1 + t2

)
A =

∂V
∂t

= (2X1,2X2,2X3)
?
=

∂v
∂t

v̇ =
Dv
Dt

=
∂v
∂t

+ (v · ∇)v =?



Description of Motion

▶ Deformation gradient : The 3 × 3 matrix of partial
derivatives of ϕ, denoted F and given as

F =
∂x
∂X

▶ Some trivial cases:
If x = X, F = I, where I is the identity matrix;
if x = X + ctE1 (translation along x-axis with speed c),
F = I. Consistent with the intuition that a simple translation
is not a “deformation” of the usual sense.



Description of Motion

▶ Polar decomposition: From linear algebra, we know we
can uniquely decompose F as

F = RU = VR,

where R is a proper orthogonal matrix called the rotation,
and U and V are positive-definite and symmetric and called
right and left stretch tensors1.

▶ U =
√

FT F and V =
√

FFT . Furthermore, we call
C = FT F = U2 the right Cauchy-Green tensor and
b = FFT = V2 is the left Cauchy-Green tensor.

1We didn’t rigorously define tensors but all the tensors we will encounter
are rank 2 and thus treated as square matrices.



Description of Motion
▶ Material displacement is denoted U and defined as

U(X, t) = x(X, t)− X

▶ Spatial displacement is denoted u2 and defined as

u(x, t) = x − X(x, t)

▶ Since x = U + X, F = (I + ∂U/∂X).

▶ Then, C, the right Cauchy-Green tensor, becomes

C = FT F = I +
∂U
∂X

+

(
∂U
∂X

)T

+

(
∂U
∂X

)T ∂U
∂X

Note that the rotational part is not involved according to
this definition. So, C is all about stretches.

▶ Green’s (material or Lagrangian) strain tensor (“deviation
from the unity”):

E =
1
2
(C − I)

2Note that U(X, t) = u(x, t).



Description of Motion
▶ The spatial counterpart of E can be acquired through

similar consideration or by “push-forwarding”3 E.

▶ With further linearization, i.e., dropping the quadratic term
under the assumption of infinitely small displacements, we
get the familiar form of the spatial strain tensor (ε):

ε =
1
2

[
∂u
∂x

+

(
∂u
∂x

)T
]

or εij =
1
2
(ui,j + uj,i)

▶ Also note that the following decomposition is always
possible:

∂u
∂x

=
1
2

[
∂u
∂x

+

(
∂u
∂x

)T
]
+

1
2

[
∂u
∂x

−
(
∂u
∂x

)T
]

The second term represents “(rigid body) rotation".
3meaning the transformations from material quantities to spatial ones.

See p.82 of Holzapfel (2000)



Example

x = ϕ(X, t) =
(

X1(1 + t2),X2(1 + t2),X3(1 + t2)
)

X = ϕ−1(x, t) =
(

x1

1 + t2 ,
x2

1 + t2 ,
x3

1 + t2

)
U, u, F =?

C, E, ε =?



Stress

▶ We learned how to quantitatively describe the motion of a
continuum body including its “internal deformation”, which
is represented by strain.

▶ We now turn to what is the force associated with the
internal deformation and how to incorporate it into the
equation of force balance.

▶ A motion of a body is caused by two kinds of forces: Body
and surface (or contact) force.
▶ Gravity governing the free fall of a billiard ball: pure body

force.

▶ Momentum transfer by collision with another billiard ball:
(mostly) surface force.

▶ Easy to find examples of deformation of continua by surface
forces.



Stress

▶ Let’s consider a continuous body that is being strained by
both body and surface forces.

▶ We need a quantity that represents the force arising due to
the internal deformation.

▶ Such a force should be additive to the body force: i.e., the
surface force is also a vector.

▶ Force “density”:
ex) The total graviational force is given by the integration of
its density:

Mg =

∫
V
ρgdV ,

where ρg is the density.



Stress
▶ Generally, a body force, Fb is the volume integration of its

density, b:

Fb =

∫
V

b dV .

▶ Likewise, the surface force (Fs) can also be acquired by
integrating its surface density:

Fs =

∫
A

t dA.

We call t, the surface force per area, traction.

▶ Note that we do NOT have to identify the integration
surface with the physical boundary of the body.

▶ With these force densities, we can talk about the local
forces acting on a point in the body rather than on the
whole body.



Stress

▶ Note that different tractions arise on differently oriented
area even if the “state” of the material is unchanged.

▶ In particular, the traction is a linear function of the normal
vector, implying the existence of a linear mapping from a
normal vector to a traction vector. Since a rank 2 tensor
can represent such a linear mapping, this relationship hints
the idea of stress tensor.

▶ Let’s look at the reasoning leading to the concept of stress
tensor more carefully.



Stress

▶ Cauchy’s tetrahedron:



Stress

▶ When no body force is acting, the force equilibrium states

tn dA − t1 dA1 − t2 dA2 − t3 dA3 = ρ

(
h
3

dA
)

a (1)

▶ Since dAi , i=1, . . . ,3 is projection of dA,

dA1 = ndA · e1

dA2 = ndA · e2

dA3 = ndA · e3

(2)

▶ Substituting (2) into (1), we get

tn − t1(n · e1)− t2(n · e2)− t3(n · e3) = ρ

(
h
3

)
a (3)

Note that dA has been cancelled out.



Stress

▶ In the limit h → 0 and with a being finite, the right hand
side becomes zero. Therefore,

tn = t1 n1 + t2 n2 + t3 n3 (4)

▶ Eq. (4) further implies that there is a rank 2 tensor4, σ,
such that

tn = σ n, (5)

where the column vectors of σ are ti (i = 1 . . . 3).

▶ We call the rank 2 tensor σ the Cauchy stress tensor.

▶ Note that all the considerations so far have been made
with respect to the current (or deformed) configuration.

4Again, we identify rank 2 tensors with square matrices



Properties of Cauchy Stress Tensor

▶ Cauchy stress, σ, is and gotta be symmetric to be
physically meaningful. For a proof, wait until we get to the
principle of angular momentum balance.

▶ We make frequent use of invariants, principal stresses
and associated directions.



Balance Laws: Transport Theorem
▶ Reminder: material time derivative

▶ Time derivative of a quantity Q in the referece configuration:

∂Q
∂t

=
DQ
Dt

.

▶ Time derivative of the same quantity expressed in the
current configuration: Since q(x(X, t), t) = Q(X, t),

Dq
Dt

=
∂q
∂t

+
∂x
∂t

· ∂q
∂x

=
∂q
∂t

+ (v · ∇)q. (6)

▶ Reynold’s transport theorem

D
Dt

∫
v(t)

f dv =

∫
v(t)

(
Df
Dt

+ f∇ · v
)

dv

=

∫
v(t)

(
∂f
∂t

+∇ · (fv)
)

dv
(7)



Balance Laws: Transport Theorem

▶ Proof of the transport theorem:
By change of variables, and differentiating under the
integral sign,

D
Dt

∫
v(t)

fdv =
D
Dt

∫
V

f (ϕ(X, t), t)J(X, t)dV

=

∫
V

[(
D
Dt

f (ϕ(X, t), t)
)

J(X, t) + f (ϕ(X, t), t)
(

D
Dt

J(X, t)
)]

dV .

DJ/Dt = (∇ · v)J, where J is det(∂x/∂X). Inserting this in
the preceding expression and changing variables back to x
gives the result.

▶ The physical meaning is that the rate of change of a
quantity contained within the current configuration is equal
to the time rate of change of the quantity and its net flux
associated with the motion of material.



Balance Laws: Mass balance (or conservation)

▶ Mass conservation (material is neither created nor lost
during deformation):

D
Dt

∫
V

R dV =
D
Dt

∫
v(t)

ρ(x, t)dv = 0 (8)

▶ By Reynold’s transport theorem, we get∫
v(t)

[
∂ρ

∂t
+∇ · (ρv)

]
dv = 0. (9)

▶ Since Eq. (9) should hold for arbitrary subset of the body,
the integrand itself must vanish everywhere. Therefore, we
get the usual form of the mass conservation equation:

∂ρ

∂t
+∇ · (ρv) = 0. (10)



Balance Laws: Force Balance (or conservation of
linear momentum)

▶ For a mass particle:

dp
dt

=
∑

i

Fi , (11)

where p is the linear momentum of the particle and Fi is
the i-th force acting on it.

▶ For a continuous body,

D
Dt

∫
v(t)

ρ v dv =

∫
v(t)

b dv +

∫
∂v(t)

t dS (12)

or if we introduce Cauchy stress into the above equation,
we get

D
Dt

∫
v(t)

ρ v dv =

∫
v(t)

b dv +

∫
∂v(t)

σn dS (13)



Balance Laws: Force Balance (or conservation of
linear momentum)

▶ By the Gauss’s theorem,∫
∂v(t)

σn dS =

∫
v(t)

∇ · σdv . (14)

▶ Therefore, (13) becomes∫
v(t)

(∇ · σ + ρ b) dv − D
Dt

∫
v(t)

ρ v dv = 0. (15)

▶ We apply Reynold’s transport theorem to the second term
on the left hand side of Eq. (15). Interestingly, we get the
following identity:

D
Dt

∫
v(t)

ρ v dv =

∫
v(t)

ρ
Dv
Dt

dv .



Balance Laws: Force Balance (or conservation of
linear momentum)

▶ Plugging the previous identity into Eq. (15), we get∫
v(t)

[
∇ · σ + ρ b − ρ

Dv
Dt

]
dv = 0. (16)

▶ Since Eq. (16) should hold not only for the entire volume
but also for any arbitrary subset of the body, the integrand
itself should be zero. Consequently, we obtain the local
equation of motion or force balance:

∇ · σ + ρ b = ρ
Dv
Dt

. (17)



Balance Laws: Force Balance (or conservation of
linear momentum)

▶ If the motion is not time dependent, meaning either a static
equilibrium (all the velocities are zero) or a steady state (all
the velocities are constant, possibly non-zero), the inertial
term of Eq. (17) is zero and the local equation of motion
becomes

∇ · σ + ρ b = 0. (18)

This is the most frequently encountered form in
geodynamics and is called Stoke’s equation.



Energy Balance Equation

▶ For simplicity, (1) we consider a body and only heat energy
in it.
▶ What are other energies that we could consider?

▶ Deformation of the body means work done to the body
and/or by the body, which will lead to change in internal
energy. So, (2) we do not consider deformation here.

▶ We further assume that (3) there is no heat energy sink or
source.

▶ Finally, (4) we consider only heat transfer by conduction.



Heat Energy
▶ Heat capacity at constant pressure, Cp:

Cp =

(
∂Q
∂T

)
p
, (19)

where Q is the heat energy.

▶ Specific heat capacity at constant pressure, cp:

cp =
Cp

m
(20)

where m is mass.

▶ Heat energy per mass, q:

q =

∫ T

0
cp(T )dT (21)

or if cp is not a function of temperature,

q = cpT . (22)



Heat Energy
▶ Heat energy of a body, Q:

Q =

∫
V
ρcpTdV . (23)

▶ Under the set of assumptions listed above, the law of
energy conservation states that the time rate of change of
heat energy within a body is equal to the net flux of heat
energy through its boundaries:

D
Dt

∫
V
ρcpTdV =

∫
∂V

f · ndS, (24)

where f is heat flux, representing heat energy flowing
through unit area per unit time.

▶ Fourier’s law of heat conduction:

f = k∇T , (25)

where k is heat conductivity.



Heat Energy
▶ The energy conservation equation becomes

D
Dt

∫
V
ρcpTdV =

∫
∂V

k∇T · ndS. (26)

▶ By applying the divergence theorem to the r.h.s and
bringing the time derivative into the integral on the l.h.s, we
get ∫

V

∂

∂t
(ρcpT )dV =

∫
V
∇ · (k∇T )dV . (27)

Note that material time derivative is identical to partial time
derivative since spatial velocity is zero.

▶ Let’s further assume that material properties, ρ, c and k
are constant. ∫

V
ρcp

∂T
∂t

dV =

∫
V

k∇2TdV . (28)



Heat Energy

▶ Since the energy conservation should be true for any
arbitrary neighborhood around a point in the body,∫

V

(
ρcp

∂T
∂t

− k∇2T
)

dV = 0 (29)

for an arbitrary V, meaning the integrand should be
identically zero.

▶ We finally arrive at the familiar form of the “heat equation”:

ρcp
∂T
∂t

= k∇2T . (30)

▶ Note that the left hand side of (26) could have been more
complicated according to Reynold’s transport theorem. It
wasn’t because of our assumption that the body doesn’t
deform.



Heat Advection-Diffusion

▶ We want to slightly generalize the heat diffusion equation
to the heat advection-diffusion equation. The new
equation will describe thermal energy that is not only
diffused but also carried along with a deforming continuous
medium.

▶ Note that the diffusion equation is derived from the
conservation of thermal energy:

D
Dt

∫
V (t)

ρcpTdV =

∫
∂V (t)

k∇T · ndS. (31)

▶ We previously assumed that the continuum body in which
temperature is non-uniform such that diffusion occurs is
not deforming. So, the volume V in the above equation
was a constant.



Heat Advection-Diffusion

▶ Let’s remove this assumption because when the medium is
in motion, the volume is also time-dependent.

▶ By applying the Reynold’s transport theorem to the l.h.s of
Eq. (31) and the divergence theorem to the r.h.s, we get∫

v(t)

(
∂(ρcpT )

∂t
+ v · ∇(ρcpT )

)
dv =

∫
v(t)

∇ · (k∇T )dv .

(32)

▶ If the continuous media is compressible, deformation
causes pV (pressure-volume, i.e., mechanical) work,
which contributes the overall thermal energetics. However,
if the media is incompressible or can freely
expand/contract, it does not do any mechanical work.



Heat Advection-Diffusion

▶ Furthermore, when the continuous medium is going
through shearing, in general we cannot ignore shear
heating as a source term. In some cases, however, we can
ignore shear heating. An example can be a plate with a
prescribed thickness that is translating in one direction
without internal deformation.

▶ If there are no other heat sources/sinks to consider, the
assumptions of zero pV work, zero shear heating and
constant material properties give

∂T
∂t

+ v · ∇T = κ∇2T . (33)



How to Relate Stress and Strain

▶ We have considered deformation of continua and balance
laws in them.

▶ These kinematics and mechanics apply to all the
continuous media. Then, where do the characteristics of
individual material come from?

▶ Properties unique to a certain material are determined by
the material’s internal constitution or physical make-up.
The quantitative expressions for such internal constitution
are called constitutive equations / laws / relations /
models.



Linear Elasticity

▶ Hooke’s law for a 1 dimensional mass-spring system:

F = −kx

▶ If no damping force acts on it, the system is conservative,
meaning by definition that there is a potential function U(x)
such that F = −∇U.

▶ In this 1D example, integration to get U is straightforward
and U = 1

2kx2.



Linear Elasticity

▶ A material is called ideally elastic when a body formed of
the material recovers its original form completely upon
removal of the forces causing the deformation, and there is
a one-to-one relationship between the state of stress and
the state of strain, for a given temperature.

▶ The one-to-one relationship precludes behaviors like creep
at constant load or stress relaxation at constant strain.

▶ The classical elastic constitutive equations, often called the
generalized Hooke’s law, are nine equations expressing
the stress components as linear homonenous (i.e., all the
terms are of the same power) functions of the nine strain
components:

σij = Cijklεkl (34)



Linear Elasticity

▶ The rank 4 tensor, Cijkl , has 81(= 34) components.

▶ However, recall that stress and strain tensor are
symmetric: i.e., σij = σji and εkl = εlk .

▶ Thus,
Cijkl = Cjikl and Cijkl = Cijlk .

▶ We further consider the case in which the material is
elastically isotropic, i.e., there are no preferred directions
in the material. Then, the elastic constants (Cijkl ) must be
the same at a given particle for all possible choices of
rectangular Cartesian coordinates in which stress and
strain components are evaluated.



Linear Elasticity

▶ The most general rank 4 tensor that satisfy all of the above
symmetry and isotropy conditions is

Cijkl = λδijδkl + µ(δikδjl + δilδjk ) (35)

(see Malvern Sec. 6.1 and 6.2 for further details.)

▶ The constitutive relation becomes

σij =
[
λδijδkl + µ(δikδjl + δilδjk )

]
εkl (36)

▶ Finally, after some simplification, we reach the isotropic
generalized Hooke’s law:

σij = λεkkδij + 2µεij , (37)

where λ and µ are called Lamé’s constants.



The full set of governing equations

▶ Mass conservation: ∂ρ
∂t +∇ · (ρv) = 0.

▶ (Linear-)Momentum conservation: ∇ · σ + ρ b = ρ Dv
Dt .

▶ Energy conservation: ∂T
∂t + v · ∇T = κ∇2T .

▶ Constitutive law: σ = σ(ϵ, ϵ̇,T ,p,etc).
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