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Abstract

DynEarthSol3D (Dynamic Earth Solver in three dimensions) is a flexible, open-source finite
element solver that models the momentum balance and the heat transfer of elasto-visco-
plastic material in the Lagrangian form using unstructured meshes. It provides a platform
for the study of the long-term deformation of earth’s lithosphere and various problems in
civil and geotechnical engineering. However, the continuous computation and update of a
very large mesh poses an intolerably high computational burden to developers and users
in practice. For example, simulating a 2-million-element mesh for 1,000 time units takes
1.4 hours on high-end desktop CPU. In this paper, we explore tightly coupled CPU-GPU
heterogeneous processors to address the computing concern by leveraging their new features
and developing hardware architecture aware optimizations. Our proposed key optimization
techniques are three-fold: memory access pattern improvement, data transfer elimination
and kernel launch overhead minimization. Experimental results show that our proposed im-
plementation on a tightly coupled heterogeneous processor outperforms all other alternatives
including traditional discrete GPU, quad-core CPU using OpenMP, and serial implementa-
tions by 67%, 50%, and 154% respectively even though the embedded GPU has significantly
less number of cores than high-end discrete GPU.

Keywords: Computational Tectonic Modeling, Long-term Lithospheric Deformation,
Heterogeneous Computing, GPGPU, Parallel Computing

1. Introduction1

The combination of an explicit finite element method, the Lagrangian description of2

motion, and the elasto-visco-plastic material model has been implemented in a family of3
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codes following the Fast Lagrangian Analysis of Continua (FLAC) algorithm [10]. These4

specific implementations of the generic FLAC algorithm have a track record of applications5

that demonstrate the method’s aptitude for Long-term Tectonic Modeling (LTM) (e.g.,6

[4, 6, 7, 12, 14, 16, 19, 20]). The original FLAC requires a structured quadrilateral mesh7

which severely limits the meshing flexibility, one of the major advantages of finite element8

method. Flexibility in meshing is all the more important for LTM in which strain localization9

needs to be adequately captured by a locally refining a mesh, which is challenging for a10

structured mesh. Additionally, each quadrilateral is decomposed into two sets of overlapping11

linear triangles that guarantee a symmetrical response to loading but leads to redundant12

computations. On the other hand, FLAC uses an explicit scheme for the time integration of13

the momentum equation in the dynamic form as well as for the constitutive update, making14

it relatively easy to implement complicated constitutive models.15

By critically evaluating the strengths and weaknesses of the FLAC algorithm, Choi et16

al.[8] created a new code, DynEarthSol2D, and Tan et al.[25] further extended it to three17

dimensions, DynEarthSol3D. DynEarthSol3D (Dynamic Earth Solver in three dimensions)18

is a robust, flexible, open source finite element code for modeling non-linear responses of19

continuous media and thus suitable for LTM. DynEarthSol3D written in standard C++ is20

multi-threaded and freely distributed through a public repository1 under the terms of the21

MIT/X Windows System license. DynEarthSol3D inherits desirable features of FLAC such22

as explicit schemes while modernizing it at the same time. The most notable improvement23

is the removal of the restrictions on meshing. As a result, one can solve problems on24

unstructured triangular or tetrahedral meshes while keeping the simple explicit constitutive25

update that made FLAC attractive in LTM. The use of unstructured mesh enables adaptive26

mesh refinement in regions of highly localized deformation and discretization of domain27

geometries that are challenging to discretize into a structured mesh. However, sequential28

mesh computations and updates are very compute-intensive, resulting in poor performance29

in practice. To process a large mesh composed of 2 million elements, it takes 1.4 hours for30

serial implementation to finish 1,000 time steps on a high-end CPU. This huge amount of31

running time places a limitation on both mesh size and resolution.32

GPUs (Graphics Processing Units) have been the platform of choice for compute- and33

data-intensive applications in many computing domains in recent years. GPU-powered com-34

puting provides a number of unique benefits that could not be found in any traditional35

parallel machines such as supercomputers and workstations. This revolutionary computing36

paradigm of offloading and accelerating compute- and data-intensive portion of applications37

on GPUs is termed as GPGPU (General-Purpose Computation on GPUs) or GPU comput-38

ing. When well optimized for target GPU hardware architecture, application performance39

can be boosted by up to several orders of magnitude.40

GPGPU platforms are typically powered by high-end discrete GPUs (i.e., separate graph-41

ics card connected through PCI express). While this type of hardware configuration provides42

best GPU processing power, data transfer overhead associated with physical separation of43

GPU device and memory from host CPU diminishes the performance gain obtained by GPU44

1http://bitbucket.org/tan2/dynearthsol3d
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acceleration. Deteriorated by kernel launch time, such overheads can be a deal breaker. If45

an application has multiple sections of CPU and GPU computations that are interleaved46

and data-dependent of each other, repetitive data transfers between host and device are47

inevitable, and overall application performance is limited by the overhead associated with48

these transfers. This problem that is not uncommon in many scientific and engineering49

applications hinders the adoption of GPGPU.50

Recent trend in microprocessor industry is that CPU and GPU are fabricated on a51

single die sharing a memory system at a cache level [3, 13]. Such tightly coupled CPU-GPU52

heterogeneous processors provide solutions to several limitations of traditional discrete GPUs53

such as aforementioned data transfer overhead [9, 24], limited GPU device memory (i.e.,54

GDDR) size [24], and disjoint memory address space. CPU and GPU on tightly coupled55

heterogeneous processors share the same data in a unified physical memory (data transfer56

is no longer needed) and also the unified system memory is typically a lot larger (e.g. 3257

GB) than discrete GPU device memory (e.g. 4GB).58

In this paper, we present the acceleration of DynEarthSol3D on tightly coupled CPU-59

GPU heterogeneous processors, leveraging a new unified memory architecture to eliminate60

data transfer overhead. We also revisit and address classical GPGPU challenges such as61

inefficient memory access patterns and frequent kernel launch overhead. The contributions62

of our paper are summarized below.63

• We demonstrate that tightly coupled CPU-GPU heterogeneous processors outperform64

discrete GPUs by eliminating data transfer overhead, a serious performance bottleneck65

of DynEarthSol3D on conventional discrete GPUs. This result is encouraging because66

the computing power of embedded GPU on heterogeneous processor is less than one67

fourth of that of discrete GPU that we have tested.68

• We propose to improve GPU memory performance by changing memory access pat-69

terns through data transformation. By restructuring the mesh, high latency random70

memory access patterns of DynEarthSol3D turn to regular patterns that GPU hard-71

ware can handle much more efficiently. As a result, it boosts the performance of GPU72

kernel execution significantly.73

• We propose to merge kernels whenever possible to minimize kernel launch overhead.74

Intensive data flow and dependency analysis are conducted to identify all kernels that75

can be merged without causing any correctness issue. As kernels are called repeatedly76

throughout program execution, total kernel launch overhead is significantly reduced.77

• We conduct thorough performance analysis and comparison with other available alter-78

natives: discrete GPU, multi-core CPU using OpenMP, and a serial implementation79

as baselines.80

The rest of the paper is structured as follows. Section 2 describes the computations81

of DynEarthSol3D and existing problems in its serial implementation on CPU. Section 382

provides the background on GPGPU with explanation of both traditional discrete GPUs and83
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tightly coupled heterogeneous processors. In Section 4, we present our implementation of84

DynEarthSol3D while focusing on three key optimization techniques. Lastly, Section 5 shows85

and discusses our experimental results through detailed evaluation of each optimization86

technique.87

2. Computational Flow of DynEarthSol3D88

Figure 1: The computational flow of DynEarthSol3D.

Figure 1 visualizes the computational flow of DynEarthSol3D. First, a mesh composed89

of tetrahedral elements is created by an external mesh generator named Tetgen [22]. Each90

element of the mesh consists of four nodes which function as interpolation points for un-91

known variables such as velocity and temperature. The program runs through a predefined92

number of time steps to reach a target model time, which is in LTM typically millions of93

years to tens of millions of year. In each time step, the temperature field is first updated94

according to the heat diffusion equation. The updated temperature may be used for com-95

puting temperature-dependent constitutive models. Next, based on the current coordinates96

of nodes and the velocity field, element volume and strain rates are computed. Strain, strain97

rates and temperature are used to update stress according to an assumed constitutive model.98

Net acceleration of each node is computed as the net force divided by inertial mass, and99

the next force is the sum of external body force and internal force arising from the updated100

stresses. The net acceleration is time-integrated to velocity and displacement. Once the dis-101

placement is updated, the coordinates of the nodes are updated. At this stage, the program102
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checks if accumulated deformation has distorted the mesh too severely. If so, Tetgen again is103

used to regenerate a mesh, each element of which satisfies a certain quality criterion. During104

this remeshing process, new nodes might be inserted into the mesh, or the mesh topology105

might change through edge-flipping. This type of remeshing has been proposed as a way of106

solving large deformation problems in the Lagrangian framework [5]. After the new mesh is107

created, the boundary conditions, derivatives of shape function, and mass matrix have to be108

re-calculated. Then, the next time step is initiated unless the current one is the last step.109

DynEarthSol3D has options to run either serially or in parallel on multi-core CPU with110

OpenMP. In the serial version, the elements of the mesh, and the nodes associated with each111

element, are processed sequentially. In the OpenMP version, when running with P number112

of threads, in order to prevent race condition among threads, mesh elements are grouped113

into 2P sets corresponding to roughly uniform 2P intervals in the x coordinates of their114

barycenters. Elements in set i are guaranteed to have no common nodes with elements in115

set i + 2. To process all elements, elements in set 0, 2, ..., 2(P − 1) are first processed in116

parallel, with each set covered by a thread. Then, after all threads finish processing, elements117

in set 1, 3, ..., 2P − 1 are processed in the same labor division. A good multi-core scaling118

can be safely achieved this way. When we evaluate the performance of our implementation119

in this paper, both serial and OpenMP-based implementations are used as baselines.120

3. General-Purpose Computing on GPUs (GPGPU)121

GPUs provide an unprecedented level of computing power per dollar and energy by122

running massive number of threads in a Single Instruction Multiple Thread (SIMT) fashion.123

It keeps many ALU (arithmetic logic unit) cores busy by hiding memory latency through124

zero-overhead thread switching. At any given clock cycle, multiple groups of threads (i.e.125

multiple of 32 or 64 threads) run in a Single Instruction Multiple Data (SIMD) fashion.126

When well optimized, data- and compute-intensive applications can be easily accelerated127

by several orders of magnitude. GPGPU is programmed using OpenCL [17] or CUDA [18]128

languages in which data- and compute-intensive portions of program are offloaded onto GPU129

device. The offloaded function-like code to be executed on the GPU device is called kernel.130

Host and device kernel codes can be executed either asynchronously or synchronously.131

3.1. Limitations of Current GPGPU Paradigm132

Although numerous applications have been successfully accelerated using GPUs with re-133

markable speedups, there are many other algorithms and applications that do not benefit134

from current GPGPU computing paradigm. This is because GPU hardware and software135

(i.e. programming model) are very different from conventional parallel platforms as they136

are evolved by the demand for real-time 3D graphics rendering. We summarize the big lim-137

itations of today’s GPGPU computing that we also found present in our target application,138

DynEarthSol3D:139

• Data transfer overhead: In conventional GPGPU settings, discrete GPU is physi-140

cally connected through PCI-Express and has separate physical memory (see Figure 2).141
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Data to be used by kernel program must be copied to device memory before kernel ex-142

ecution. If an application consists of multiple sections of CPU and GPU computations143

that are interleaved and data-dependent on each other, frequent data transfer between144

host and device is necessary. Therefore, overall application performance is limited by145

the overhead associated with the slow data transfer.146

• Kernel launch overhead: The host CPU communicates with GPU through device147

driver calls and each command including kernel invocation involves overhead. When148

a large number of kernel calls are performed throughout the program execution, the149

kernel launch overhead associated with device driver calls can be added up to significant150

portion of overall performance. Such overhead can be a serious problem especially when151

the kernel execution time is small. Therefore, launching multiple small kernels should152

be avoided whenever possible to reduce the overhead.153

• Irregular memory access: GPU hardware architecture is designed for maximizing154

throughput for a group of threads rather than minimizing the latency of an individual155

thread. It implies that memory subsystem becomes very inefficient when threads issue156

memory requests with irregular access patterns [15]. Altering memory access patterns157

toward more hardware friendly ones is the most important yet challenging optimization158

to improve kernel performance. This is typically done by transforming data layout or159

changing computations in source code.160

Figure 2: The system diagram of conventional discrete GPGPU platform.

3.2. Tightly Coupled CPU-GPU Heterogeneous Processors161

Recent trend in microprocessor industry is to merge CPU and GPU on a single die162

[2, 21]. This is a natural choice in microprocessor industry as it offers numerous benefits163

such as fast interconnection and fabrication cost reduction. Recently, the processor industry164

and academic research community have formed a non-profit consortium, called HSA (Het-165

erogeneous System Architecture) foundation [11] to define the standards of hardware and166

software for next generations of heterogeneous computing. Such processors that couple CPU167

and GPU at last level cache overcome some limitations of current GPGPU. Tightly coupled168

heterogeneous processors provide the following benefits.169
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• Fast and fine-grained data sharing between CPU and GPU: Multi-core CPU170

and many-core GPU are tightly coupled at last cache level on a single die and share a171

single physical memory (see Figure 3). This architecture design eliminates CPU-GPU172

data transfer overhead by sharing the same data.173

• Large memory support for GPU acceleration: Data oriented applications such174

as big data processing and compute-intensive scientific simulations require a large175

memory space to minimize inefficient data copy back and forth. In tightly coupled176

heterogeneous processors, GPU device shares system memory that is typically a lot177

larger (e.g. 32GB) than device memory in discrete GPUs (e.g. 4GB).178

• Cache coherence between CPU and GPU: This new hardware feature will remove179

off-chip memory access traffic significantly and allow fast, fine-grained data sharing180

between CPU and GPU. Both devices are capable of addressing the same coherent181

block of memory, supporting popular application design patterns such as producer-182

consumer [23].183

Figure 3: The system diagram of tightly coupled CPU-GPU heterogeneous processors.

4. Implementation and Optimization184

As shown in Figure 1, DynEarthSol3D sequentially computes and updates unknowns on185

the nodes of a mesh in each time step. To identify time-consuming parts of the program,186

we first profile and decompose the execution time of serial version at functional level2, and187

illustrate the result in Figure 4. This profiling and breakdown of execution time provides188

useful information that helps identify the candidate functions to be offloaded to GPU. Based189

on this information and through source code analysis, we have chosen following functions190

(or operations) to accelerate on GPU. They account for 88% of the total execution time191

in DynEarthSol3D. For the sake of readability of the paper, we use short names shown in192

paranthesis in Figure 4 in the rest of the paper.193

2In serial DynEarthSol3D, computing and updating each property of mesh is written as a function. Note
also that the remeshing operation is excluded from our analysis as it uses the external Tetgen library whose
performance is not our focus in this work.
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Figure 4: Performance breakdown of the serial version of DynEarthSol3D.

In the following subsections, we describe the general structure of our OpenCL imple-194

mentation, followed by the detailed presentation of each optimization. Our optimizations195

focus on 1) memory access patterns, 2) data transfer between CPU and GPU, and 3) kernel196

launch overhead.197

4.1. The Structure of OpenCL Implementation198

Figure 5: The structure of OpenCL implementation on CPU-GPU heterogeneous platform.

Initial GPU setup including device configuration, platform creation, and kernel building,199

etc. is performed only once before the program starts updating solutions in multiple time200

steps. The framework described in Figure 5 applies to all of our target functions. OpenCL201

buffers are first created with appropriate flags that enable the zero copy feature on heteroge-202

neous processor. These buffers reside on the unified memory that is accessible to both CPU203

and GPU (This feature is detailed in Section 4.3). After buffers are created, kernel argu-204

ments are set up, and then kernel is launched. Each mesh element is processed by a specific205

thread through one-to-one mapping between work-item ID (in a n-dimensional thread index206

space called NDRange) and element ID. Multiple work-items in the NDRange are grouped207

into a work-group that is assigned to a compute unit on GPU. While each thread reads input208

element from global memory, processes, and updates it, two different elements mapped to209

two threads may share some nodes, which leads to a race condition when they update the210

shared node at the same time. To guarantee that outputs are updated correctly, the race211

condition must be handled through atomic operations. The execution on GPU continues212
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until all threads complete their works and are synchronized by the host to ensure that out-213

put data are complete and valid. Finally, buffers are released, and the program continues214

its remaining operations in the current time step or moves on to the next one.215

4.2. Memory Access Pattern Improvement216

The performance of GPGPU is heavily dependent on the memory access behavior. This217

sensitivity is due to a combination of the underlying massively parallel processing execution218

model present on GPUs and the lack of architectural support to handle irregular memory219

access patterns. Hardware unfriendly memory accesses degrade performance significantly220

as it results the serialization of many expensive off-chip memory accesses. For linear and221

regular memory access patterns issued by a group of threads, the hardware coalesces them222

into a single (or fewer number of) memory transactions, which significantly reduce overall223

memory latency, consequently less thread stalls. Therefore, application performance can be224

significantly improved by minimizing irregularity of global memory access patterns.225

In DynEarthSol3D, Tetgen program generates a mesh with a system of element and226

node numbers (IDs). Each tetrahedral element with its own ID is associated with four227

different nodes numbered in semi-random fashion. In our implementation, nodes are accessed228

sequentially by each thread. Therefore, the randomness of node IDs in an element results in229

irregular pattern of global memory accesses requested by a single thread which has to load230

and update node-related data locating randomly in global memory. Figure 6 illustrates a case231

where two adjacent elements may share three nodes (i.e. IDs 10, 30, 60) together. Figure 7a232

visualizes the randomness of the node system by representing each node ID corresponding233

to its element ID.234

Figure 6: Two tetrahedral elements share three nodes.
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(a) Original random relationship (b) Improved relationship

Figure 7: Relationship between node and element IDs. Each element ID is mapped to a single thread in
GPU kernel.

To eliminate the randomness of node ID system, we renumber all nodes so that they are235

ordered by their corresponding x coordinates and renumber all elements similarly by the236

x coordinates of their centers. As a result, node IDs within a single element and among237

multiple adjacent elements are close together. Figure 7b illustrates the improved relationship238

between node and element IDs. This improved pattern has a direct impact on memory239

access patterns of the kernel. Cache hit rate significantly increases, and memory accesses240

are coalesced. Therefore, overall memory latency during kernel execution is significantly241

decreased.242

4.3. Data Transfer Elimination243

Figure 8: The structure of OpenCL implementation on discrete GPU platform.

Figure 8 shows the computational flow of OpenCL implementations on conventional244

discrete GPU platform with respect to physical execution hardware. On discrete GPU245

systems where CPU and GPU have separate memory subsystem, data copy between host and246

device must be done via low speed PCI Express bus. Such data movement takes considerable247

amount of time and can significantly offsets performance gains obtained by GPU kernel248

acceleration. This data copy is a serious problem in DynEarthSol3D as large amount of249
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data has to be copied back and forth between host and device in each time step. Tightly250

coupled CPU-GPU heterogeneous processors offer a solution to this bottleneck as CPU and251

GPU share the same unified physical memory. Using a feature known as zero copy, data (or252

buffer) can be accessed by two processors without copying. Zero copy is enabled by passing253

one of following flags appropriately to clCreateBuffer OpenCL API function [1].254

• CL MEM ALLOC HOST PTR Buffers created with this flag is “host-resident255

zero copy memory object” that is directly accessed by host at host memory bandwidth256

and visible to GPU device.257

• CL MEM USE HOST PTR This flag is similar to CL MEM ALLOC HOST PTR.258

However, instead of allocating a new memory space belonging to either host or device,259

it uses a memory buffer that has been already allocated and currently being used by260

host program.261

• CL MEM USE PERSISTENT MEM AMD This flag is available only on262

AMD platform. It tells host program to allocate a new “device-resident zero copy263

memory object” that is directly accessed by GPU device and accessible in host code.264

Because the first and third options allocate new empty memory spaces, the buffers need to265

be filled with data before kernel execution on GPU. In our DynEarthSol3D implementation,266

the second option is used to avoid such extra buffer setup. Figure 9 illustrates how both267

host program running on CPU and kernel running on GPU access data in shared buffers268

created with CL MEM USE HOST PTR flag.269

Figure 9: Memory buffer shared by CPU and GPU (a.k.a. zero copy) on tightly coupled heterogeneous
processors.

11



4.4. Kernel Launch Overhead Minimization270

Figure 10: The breakdown of kernel execution process.

Executing a kernel on GPU device consists of three steps. A kernel launch command271

is first enqueued to the command-queue associated with device, and then the command272

is submitted to device before the kernel is finally executed. Queuing and submitting ker-273

nel launch command are considered as overhead. According to our experiment on AMD274

platforms, the command submission (second block in Figure 10) accounts for most of the275

overhead. This overhead becomes significant when actual kernel execution time is relatively276

short compared to kernel queuing and submission time as exemplified in Figure 10. In ad-277

dition, the use of CL MEM USE HOST PTR flag results in a small runtime overhead as278

the size of buffers used in kernel increases. These two kinds of overhead are repeatedly279

accumulated in DynEarthSol3D as kernels are re-launched in each time step.280

The only available solution to this overhead is to reduce the number of kernel launches281

throughout the program execution. Toward that end, we merge multiple functions into282

a single kernel, so there are less number of kernel to be launched. If data dependency283

exists between two functions (meaning that the second function needs to use outputs of the284

first one), they cannot be merged into a single kernel because GPGPU programming and285

hardware execution model does not guarantee that the first function finishes its entire thread286

execution before the second starts. Without such guarantee, the second function might use287

old input data that has not been updated yet by the first one.288

In our implementation, we first perform in-depth data dependency analysis of DynEarth-289

Sol3D to identify possible combinations of functions with no data dependency. Based on290

this analysis, we find two combinations. The first one combines volume func, mass func and291

shape func. The other merges temp func and strain rate func. For simplicity, we call the292

first and second merged kernels intg kernel 1 and intg kernel 2 respectively in the rest of293

this paper.294

5. Experimental Results295

To evaluate the performance of our proposed OpenCL implementation on tightly cou-296

pled CPU-GPU heterogeneous processors we compare its performance with both serial and297

OpenMP-based implementations as baselines. We also analyze the impact of each proposed298

optimization technique.299
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In all experiments, we use the same program configuration with varying sizes of mesh of300

elasto-plastic material. The program runs in 1,000 time steps, and its outputs are written301

into output files every 100 steps. Performance results are accumulated in each time step.302

Wall clock timer and OpenCL profiler are used to measure performance of host code and303

kernel respectively. We compare our OpenCL output results with serial version’s outputs to304

verify the correctness of our implementation.305

We experiment our OpenCL-based implementation on AMD APU A10-7850K which is306

the latest heterogeneous processor as of this paper writing. This tightly coupled heteroge-307

neous processor consists of a quad-core CPU with maximum clock speed of 4.0 GHz and308

a Radeon R7 GPU with eight compute units running at 720 MHz on the same die. Our309

baseline versions (i.e., serial and OpenMP-based implementation) are tested on the quad-310

core CPU of the same APU for fair comparison. In evaluating the impact of data transfer311

elimination, we use a high-end discrete AMD GPU Radeon HD 7970 codenamed Tahiti. It312

has 32 compute units with maximum clock speed of 925 MHz. The operating system is313

64-bit Ubuntu Linux 12.04 and AMD APP SDK 2.9 (OpenCL 1.2) is used.314

5.1. Overall Acceleration315

In this section, we compare the performance of our OpenCL-based implementation with316

two baseline versions: serial and OpenMP-based implementations at both program- and317

function-levels. The results3 are shown in Figure 11. We varied the number of mesh el-318

ements from 7 thousand to 1.5 million. Regarding integrated kernels intg kernel 1 and319

intg kernel 2, we do comparisons with their corresponding component functions in serial and320

OpenMP-based implementations. Note that intg kernel 1 merges volume func, mass func321

and shape func, and intg kernel 1 merges temp func and strain rate func.322

At program level, our OpenCL implementation optimized for tightly coupled hetero-323

geneous processor outperforms both serial and OpenMP-optimized versions by 154% and324

50% respectively for 1.5-million-element mesh. At function level, all target functions show a325

similar trend in performance. Especially, integrated kernel intg kernel 1 is 329% and 203%326

faster than its before-merged case in serial and OpenMP versions respectively. The impact327

of merging kernels is analyzed in more detail in later section.328

3For fair comparisons, experiments are done with the improved node ID system. A less random memory
access pattern also improves the performance of serial and OpenMP-based versions due to better cache
utilization on CPU.
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(a) Overall performance (at program level). (b) Performance of intg kernel 1.

(c) Performance of force func. (d) Performance of intg kernel 2.

(e) Performance of stress func. (f) Performance of stress rot func.

Figure 11: Performance comparison among different implementations.
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An interesting observation from these comparisons is that performance gain from GPU329

acceleration becomes more substantial as input size increases. If there are a small number330

of threads issued (i.e. small input), GPU computing hardware resources are underutilized331

and unable to compensate for the setup overhead of GPU hardware pipelines.332

5.2. Impact of Memory Access Pattern Optimization333

In this section, we analyze the impact of node ID system improvement on performance by334

comparing two implementations with and without this improvement at function level. Only335

kernel execution time measured by AMD profiler is concerned here as memory access pattern336

does not affect other parts of our optimization. Figure 12 illustrates these performance337

comparisons.338

Figure 12: The impact of memory access pattern on kernel execution time.

Substantial improvement in kernel execution is achieved in functions that process node-339

related mesh properties intensively (i.e., 15x, 13.4x, 7.2x, 2x speedups in intg kernel 1,340

force func, intg kernel 2, and stress rot func respectively). The randomness of node IDs341

does not affect performance of stress func because it deals with only element-related mesh342

properties. The improved memory access patterns enable kernels to take advantage of spatial343

locality within a thread and across threads in a work-group, which consequently yields better344

utilization of GPU cache system. In addition, because multiple global memory requests can345

be coalesced into fewer number of memory transactions, the improved node ID pattern346

reduces both on-chip and off-chip memory traffic substantially and reduces overall memory347

latency.348

5.3. Impact of Data Transfer Elimination349

In order to demonstrate the significant benefit of utilizing tightly coupled CPU-GPU350

heterogeneous processors in terms of data transfer overhead, we present and compare the351

execution time of two kernels: intg kernel 1 and stress func in Figure 13. Both functions352

shown here compute and process large number of mesh properties that are associated with353

a considerable amount of data. We test them on 1) high-end discrete GPU Radeon HD354
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7970 (codenamed Tahiti) with explicit data transfer by calling clEnqueueWriteBuffer and355

clEnqueueReadBuffer, and 2) heterogeneous processor AMD APU A10-7850K with zero copy356

feature enabled with respect to data transfer, kernel execution and overhead.357

(a) intg kernel 1 function. (b) stress func function.

Figure 13: The impact of data transfer elimination.

On discrete GPU, explicit data transfer between host and device memory accounts for358

88% and 85% of total performance in intg kernel 1 and stress func respectively. The reason359

for this extremely high cost of data communication on discrete platform is that all data are360

transferred through PCI Express bus at slow speed. In contrast, there is no data transfer361

on CPU-GPU heterogeneous platform. Regarding intg kernel 1 function, the AMD APU362

outperforms the high-end discrete GPU (i.e. 67% faster) despite the fact that the Tahiti GPU363

is provided with more powerful computing capability (more compute units and higher clock364

speed than the AMD APU). However, in the case of stress func function, the elimination of365

data transfer is not enough to compensate for the much less computing capability of AMD366

APU. The reason is that compared to intg kernel 1 function, stress func’s kernel executes367

a lot more arithmetic computations that the discrete GPU is capable of performing much368
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faster than the embedded GPU of heterogeneous processor is able to do.369

5.4. Impact of Kernel Overhead Minimization370

According to our experiment, the kernel launch overhead accounts for 27% of intg kernel 1 ’s371

total execution time on the CPU-GPU heterogeneous processor. This section demonstrates372

the benefits of our overhead minimization technique in two integrated kernels: intg kernel 1373

and intg kernel 2. By comparing them with their separate versions, we notice that perfor-374

mance gain comes from two aspects: reduced overhead and improved total kernel execution.375

(a) intg kernel 1 function. (b) intg kernel 2 function.

Figure 14: The impact of kernel overhead minimization.

Figure 14 shows the performance comparison between the two merged functions and376

their corresponding separate versions. The results show that the overhead is reduced by377

53% and 46% in both intg kernel 1 and intg kernel 2 respectively by merging kernels into a378

single kernel. Moreover, merging kernels also speeds up the kernel execution (1.8x and 1.6x379

respectively). By merging kernels, data can be reused across different individual kernels,380

which reduces global memory accesses. Moreover, merging multiple kernels into a single381

kernel increases the number of arithmetic computations that better hide memory latency [1].382

6. Conclusions and Future Works383

In this paper, we present the acceleration of DynEarthSol3D on tightly coupled CPU-384

GPU heterogeneous processors by leveraging their new features, and compare its perfor-385

mance and benefits with other serial and parallel alternatives. Our results show that the386

OpenCL-based implementation on tightly coupled heterogeneous processors outperforms387

both serial and OpenMP-based implementations that run on a multi-core CPU. We also388

emphasize the importance of memory access pattern in GPGPU programming. With a389

proper node ID system that reduces the randomness of global memory accesses, memory la-390

tency is decreased significantly in our OpenCL-based optimization. Furthermore, zero copy391

17



feature that is available on heterogeneous platform solves the big issue of expensive data392

transfer between host and device memory in conventional discrete GPU. Such benefits are393

examined in our in-depth analysis. We also discuss how integrating multiple small functions394

into a single kernel reduces both overhead and kernel execution time.395

Our work demonstrates the potential of tightly coupled CPU-GPU heterogeneous proces-396

sors for the acceleration of data- and compute-intensive programs such as DynEarthSol3D.397

However, some issues of current heterogeneous processors need to be addressed in the future.398

The computing power of embedded GPU in current heterogeneous processors (e.g. 8 com-399

pute units in Kaveri) is much lower than the one of discrete GPUs (e.g. 32 compute units400

in Tahiti). This gap imposes a trade-off between better kernel performance on discrete plat-401

forms and “zero” data transfer on heterogeneous processors. In the future, heterogeneous402

processors are expected to provide more powerful compute units. Moreover, although the403

need for data transfer is eliminated, high overhead observed on AMD’s heterogeneous plat-404

form in our experiment needs to be eliminated. This problem can be addressed with better405

software supports (i.e. driver) from hardware vendor. Currently, OpenCL 1.2 does not sup-406

port all promising HSA features of heterogeneous computing. With the OpenCL 2.0 coming407

soon, we are looking forward to utilizing these new features in our future optimization of408

DynEarthSol3D.409
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