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Using core complex geometry to constrain fault strength

Eunseo Choi,' W. Roger Buck,” Luc L. Lavier,>* and Kenni Dinesen Petersen

Received 3 June 2013; accepted 9 July 2013; published 7 August 2013.

[1] We present the first model results showing that some core
complex detachment faults are strong and that their strength has
to be in a narrow range to allow certain extensional structures to
develop. The structures we simulate are kilometer-scale “rider
blocks” that are particularly well observed on some oceanic
core complexes as well as continental metamorphic core
complexes. Previous numerical simulations of lithospheric
extension produced the large-offset, core complex-forming,
normal faults only when the faults were weaker than a given
threshold. However, our new, high-resolution simulations
indicate that rider blocks only result when the faults
are stronger than a given level. A narrow range of fault
weakening, relative to intact surrounding rock, allows for a
consecutive series of rider blocks to emerge in a core
complex-like geometry. Our results show that rider blocks
develop when the dominant form of weakening is by
reduction of fault cohesion while faults that weaken primarily
by friction reduction do not form distinct rider blocks.
Citation: Choi, E., W. R. Buck, L. L. Lavier, and K. D. Petersen
(2013), Using core complex geometry to constrain fault strength,
Geophys. Res. Lett., 40, 3863-3867, doi:10.1002/grl.50732.

1. Introduction

[2] Faults must be weaker than surrounding rocks to ex-
plain observed localization of strain on faults. There is dis-
agreement over just how weak faults are and particularly
whether they can be characterized as having normal versus
low values of friction. Laboratory measurements indicate that
for most rocks, the friction coefficient is between 0.6 and 0.8
[Byerlee, 1978] which also predicts relatively high angles for
active normal faults formed under subvertical maximum
compressive stress, consistent with observed dips of active,
seismogenic normal faults that range between ~45° and 60°
[Jackson, 1987; Collettini and Sibson, 2001], and stress dif-
ferences measured in boreholes [McGarr and Gay, 1978;
Brace and Kohlistedt, 1980; Townend and Zoback, 2000].
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[3] The recognition of large-offset normal faults, or de-
tachments, in metamorphic core complexes [Coney, 1980]
that presently dip at a low angle (<30°), or are flat, has been
used as an argument that these faults have a very low friction
coefficient [e.g., Hayman et al., 2003; Axen, 2004; Numelin
etal.,2007]. Several questions about low-angle normal faults
are debated including whether they originate with low dips
[Wernicke, 1981; Yin, 1989; Forsyth, 1992] or are rotated
into that orientation [Buck, 1988; Wernicke and Axen,
1988]. Some normal faults do appear to be active with a
low dip angle, though they may have inherited a low-friction
fault zone [Collettini et al., 2009]. However, the question of
the dip angle for the formation of oceanic detachments has
been firmly resolved in favor of high-angle initiation based
on the large magnitude of rotation indicated by paleomag-
netic studies of drill cores from the footwalls of two oceanic
core complexes [Morris et al., 2009; MacLeod et al., 2011].

[4] Here we consider the implications for fault strength of
structures called rider blocks, seen in many continental and
oceanic core complexes. Rider blocks are pieces of hanging
wall (i.e., from above the fault plane) riding on the master
normal fault (Figure 1) of core complexes [Coney, 1980;
Rehrig and Reynolds, 1980; Davis et al., 1986; Reston and
Ranero, 2011]. They were first recognized on continental
core complexes (Figure la), and recent observations from
oceanic core complexes have prompted renewed interest in
rider block formation. The initial discovery of oceanic core
complexes relied on the mapping of corrugated detachment
surfaces that are not covered by rider blocks, but seismic im-
aging indicates that many oceanic detachments are buried by
rider blocks as shown in Figure 1b. Such buried detachments
may exist along the as much as half of slow-spreading ridges
[Escartin et al., 2008; Reston and Ranero, 2011] while corru-
gated surfaces are seen on a much smaller fraction of ridges.
Thus, rider blocks may cover vast areas of crust formed at
slow-spreading centers [Reston and Ranero, 2011].

2. Previous Work

[s] Many core complex detachments are clearly rotated to
lower dip angles, or are even overturned, by isostatic adjust-
ment to the topographic loads produced by fault offset [e.g.,
Spencer, 1984]. Models of the regional isostatic response to
offset assumed to occur on a single normal fault show that
the inactive, upper part of these faults could rotate from ini-
tially high dip angle to be nearly flat or overturned as long
as the fault offset was greater than the brittle layer thickness.
Also, model rider blocks could form if high-angle splay
faults periodically grow out of the active faults [e.g., Buck,
1988]. These simple models did not consider the range of
fault strengths that would explain two questions: (1) How
could a single fault develop a very large offset and (2) when
would splay faults bounding rider blocks form?
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Figure 1. Geometry of rider blocks and the associated master and splay faults. (a) Interpreted cross section of the metamor-
phic core complex at the Harcuvar Mountains in Arizona, USA. Modified after Rehrig and Reynolds [1980]. (b) Structural
interpretation of a seismic depth image acquired at the Cape Verde abyssal plain. The dashed lines represent the top of base-
ment or inferred boundaries between basement and infill. Modified after Reston and Ranero [2011].

[6] The first of these questions was addressed using ana-
lytic and numerical models that came to a somewhat unsur-
prising conclusion. Namely, for large offset and such large
fault rotations to develop, a fault had to be weaker than a
given value [e.g., Forsyth, 1992; Buck, 1993; Lavier et al.,
2000]. The inactive upper part of such model large-offset
faults rotates to domal shapes that compare well to the ob-
served geometry of continental and oceanic core complexes
[Lavier et al., 1999]. If the fault were too strong, then a series
of normal faults develop with no fault accruing sufficient off-
set to produce the flat faults seen in core complexes.

[7] A theoretical treatment of the second problem [Choi
and Buck, 2012] suggests that core complex rider blocks only
form when the master fault weakening, relative to the sur-
rounding rocks, is in a narrow range. If the fault strength is
too low, no rider blocks form since the master fault can slip
even if it has rotated to a very low dip. This analysis also pre-
dicts that if the fault loses strength primarily by friction re-
duction, then discrete rider blocks cannot be created.
Because the analysis ignored complications, such as changes
in stress orientations due to fault offset or partial basin filling,
these predictions can only be a rough guide to the conditions
needed for rider block formation.

3. Model Formulation

[8] Here we use numerical experiments to investigate the
generation of large-offset normal faults and associated rider
blocks with a minimum of simplifying assumptions. We follow
the numerical procedure employed in some earlier studies of
normal fault evolution [Lavier et al., 2000] but include two
new features essential to simulate rider block development.
First, because rider blocks often have dimensions smaller than

the brittle layer thickness, the grid spacing needed to resolve
them is 5-10 times greater than in earlier studies. Second, the
blocks are composed largely of sedimentary and volcanic ma-
terial that fills the fault-generated basin. Thus, we assume
that the basin stays filled up to a depth D; with respect to
the initial surface—a procedure similar to that used in previ-
ous studies of effects of sedimentation [e.g., Burov and
Poliakov, 2001; Bialas and Buck, 2009].

[9] We consider extension of an idealized brittle (Mohr-
Coulomb) layer as depicted in Figure 2a. The layer floats on
an inviscid substratum while the top surface is stress free.
Bands of localized plastic strain develop through strain weak-
ening and are considered to represent faults. The process of
strain weakening is approximated by reducing cohesion and
friction coefficient proportional to the amount of plastic defor-
mation. Previous numerical treatment of fault strain weaken-
ing show that results can be made largely independent of
mesh size by reducing friction and cohesion as a function of
a characteristic amount of fault offset [Lavier et al., 2000;
Gerya, 2013]. We adopt 1.5km for the characteristic offset
in this study, which has been shown to promote large-offset
faulting [Lavier et al., 2000]. Practically, plastic parameters
that are affected by strain weakening are linearly reduced from
an initial value to a final value as plastic strain increases to a
characteristic value. The characteristic plastic strain is given
by the characteristic offset divided by an approximate thick-
ness of shear band (~300 m, 3 times the grid resolution).

[10] The density of the brittle layer is fixed at 2800 kg/m>.
Hydrostatic pore fluid pressures are assumed with a water
density (1000 kg/m>). Material filling in the depression cre-
ated by fault offset is represented by infill depth (Di) and
has the properties as the rest of the brittle layer except the
density is 2400 kg/m>. As inviscid material beneath the brittle

3864



CHOI ET AL.: CORE COMPLEX GEOMETRY AND FAULT STRENGTH

a 100 km
0.5

o -
(cm/yr) <

=> 5

Brittle crust =
_>(cm/yr)

Weak inhomogeneity

Low-viscosity ductile substratum

b After 3 km of extension

C 10 km

Sedimentary infill

d 20 km

Sediments Plastic Strain

= ]

0 8

Figure 2. Reference model showing a sequence of rider blocks forming consecutively. (a) Model setup. BDT denotes the
brittle-ductile transition. The weak inhomogeneity, slightly off centered to the left, triggers the formation of the first fault. (b—f)
Snapshots of accumulated plastic strain and infill distribution with increasing fault offset. Each snapshot shows a 20—80 km ex-
tent of the original domain without vertical exaggeration. Lamé’s constants are both 30 GPa, C;=20 MPa, C;=4 MPa, the initial
and final friction coefficients are 0.58, the characteristic offset is 1.5 km, and the densities of crust and infill are 2800 and
2400 kg/m>, respectively. Infill depth (Di) is a depth from the reference zero level to the top of the infill as visualized in panel C.

layer ascends to 10 km depth, it takes on all properties of that
brittle layer as may occur through ductile-to-brittle transition
due to hydrothermally assisted cooling [Lister, 1980; Phipps
Morgan and Chen, 1993; Lavier and Buck, 2002].

[11] A suite of models were run with different values of pa-
rameters such as the initial or final cohesion and the depth of
infill. Since previous work shows that a brittle layer thickness
around 10km gives the observed wavelength of doming of
core complexes [e.g., Lavier et al., 1999; Rey et al., 2009;
Le Pourhiet et al., 2012], the same brittle layer thickness is
employed here. The initial friction coefficient is set to be
0.58 but allowed to evolve to different final values through
prescribed strain weakening. Values of initial cohesion are
in the range of 10-40 MPa, and different final values of cohe-
sion were considered.

4. Results

[12] A case that produced a sequence of sizeable rider
blocks is illustrated in Figure 2 (also see the dynamic content
Movie S1 in the supporting information). This reference case
has an initial cohesion of 20 MPa and an infill depth of
1000 m. The final cohesion is 4 MPa but friction remains
unchanged. Snapshots for 3 to 40 km of extension are shown
in Figures 2b—2d. The first normal fault to form has a dip of
60°, consistent with the friction coefficient (Figure 2b). As
extension proceeds, the footwall is uplifted due to unloading
and the master fault bends and rotates. As a result, the fault
has a dip of about 45° at 10km of extension (Figure 2c).
With further rotation, the fault locks at depths <~3 km and
a new splay fault forms. Offset of this splay produces a
well-defined rider block, composed of the former basin infill
and hanging wall crust (Figure 2d). Subsequent rider blocks
do not take as long to form because the active master fault
around the depth of 3 km remains close to the locking orien-
tation after the first rider block forms. Consequently, their
cross-sectional areas are smaller than that of the first block.
By extension of 30km, two more rider blocks are created
(Figure 2e) and the system appears capable of producing
more rider blocks with continued extension (Figure 2f).

[13] Faulting patterns in our numerical models are sensi-
tive to many parameters such as initial and final cohesion/
friction coefficient and infill depth (for an overview, see the
supporting information), but we here present some represen-
tative cases. For much greater strain weakening than in the
reference, model rider blocks do not form. As the initial
high-angle normal fault rotates to a low dip at intermediate
to shallow depths, it continues to accommodate extension
without locking. For an initial cohesion of 20 MPa, final co-
hesions less than 4 MPa and final friction coefficients less
than 0.32 make the initial fault too weak for rider block for-
mation no matter the thickness of infill (Figure 3a). The size
of rider blocks depends on fault strength. When a fault is

a Final friction = 0.38

Figure 3. Variations in rider block geometries with differ-
ent model parameters. Key differences from the reference
model (Figure 2) are indicated on top of each model. (a)
Lower final friction, 0.38. (b) Higher final cohesion of
8 MPa (reduced by 12 MPa). (c) Even higher final cohesion
of 10 MPa (reduced by 10 MPa). The thick black lines in all
panels are the contours where plastic strain is 1.75.
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Figure 4. Summary of behaviors of models with total cohesion loss and a constant friction coefficient of 0.58. (a) Images of
the first rider blocks, which are centered on the assigned initial cohesion (C;) and infill depth (D;). Each image, rendered as in
Figure 2, shows a central 20 km wide region of the model domain. The gray-shaded regions (bounded by dashed lines)
represent the ranges of C; and D; for which rider blocks were not created or disrupted by later-formed faults. Schematic dia-
grams of the characteristic faulting styles are also shown in the corresponding regions of no rider block in which the thick
solid lines represent faults. (b) Phase map showing combinations of C; and D,, under which at least one rider block forms
and remains intact (solid circles) or none does (crosses). Areas of the solid circles are proportional to the cross-sectional areas
of the first-formed rider block in the corresponding models; rider block area is noted next to the circles.

slightly stronger than in the reference model (e.g., the final
cohesion equal to 8 MPa), the fault locks after a less amount
of rotation as well as at a shallower depth, making the size of
and the interval between rider blocks smaller (Figure 3b). A
much stronger fault with a final cohesion greater than
10 MPa produces even smaller rider blocks that are difficult
to recognize given the current model resolution (Figure 3c).

[14] The effects of variation in cohesion and infill depth on
rider block formation are shown in Figure 4a for cases where
the fault friction is maintained. The plot shows under what
combinations of infill depth and initial cohesion rider blocks
can form. Also shown is the cross-sectional area of the first
block (Figure 4b). Rider blocks are bigger for greater cohe-
sion loss and for smaller infill depth. This trend is roughly
consistent with the prediction by Choi and Buck [2012].
However, there is also substantial discrepancy between nu-
merical results and theory in terms of the block sizes as well
as the formation conditions. For example, with intermediate
amounts of infill (e.g., infill depth~1000m), rider blocks
emerge for a narrower range of cohesion in the analytical
treatment compared to the results of this study. The presence
of added basin infill changes the stress field, and as a conse-
quence, the shape of the master fault in ways that promote
rider block formation. Nevertheless, the range of fault weak-
ening leading to large-offset faults with rider blocks is very
restricted. Models considering a wide range of parameters
are discussed in the online supporting information.

[15] For models with an initial cohesion of 20 MPa and an
infill depth of 1km (Figures 2 and 3), we find that rider
blocks only form when a master fault has a friction coeffi-
cient greater than 0.4 and a cohesion reduction between about
12 and 20 MPa. Qualitatively, a rider block-producing fault
must have high friction but low final cohesion.

5. Discussion and Summary

[16] Rider blocks generated in our reference model
(Figure 2) are reminiscent of the inferred geometry of master
and splay faults as well as associated fault blocks seen in con-
tinental and oceanic core complexes (Figure 1). However,
some core complexes have no rider blocks. Erosion could

remove rider blocks in some continental areas though this
should not occur for oceanic core complexes. Our results
suggest either that the detachments in these complexes have
a friction coefficient lower than 0.4 or that the amount of
infill is not sufficient to form rider blocks even though fric-
tion coefficient is greater than 0.4. In the former case, such
low values of friction are consistent with the measured
values (< 0.3) for weak minerals like talc found on the cor-
rugated surface [Escartin et al., 1997; Escartin et al., 2003;
Moore et al., 2004; Schroeder and John, 2004; Boschi
et al., 2006; Karson et al., 2006; Dick et al., 2008; Picazo
et al., 2012]. The latter case, insufficient infill, has also been
suggested as an explanation of the lack of rider blocks on
the Atlantis massif, which is located at a volcanic infill-poor
ridge-transform intersection [Reston and Ranero, 2011].

[17] This is the first study to place upper and lower bounds
on the strength of normal faults. Our self-consistent numeri-
cal models indicate that large-offset, low-angle normal faults
with sizable rider blocks are frictionally strong and have
rotated to a low angle from the optimal orientation predicted
by Andersonian fault mechanics. Rider blocks emerge with a
core complex-like geometry in high-resolution simulations
only for a narrow range of fault weakening, relative to intact
surrounding rock. Furthermore, they develop when the dom-
inant form of weakening is by reduction of fault cohesion
while faults that weaken primarily by friction reduction do
not form distinct rider blocks. Our models require that some
large-offset faults have values of friction coefficient close to
0.6. Though we have focused on a specific fault type, our
results may have implications for faults in general: i.e., faults
have “normal” levels of friction, and altered minerals like talc
must be present to explain the apparent low-strength features
such as core complexes without rider blocks.
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